Patents by Inventor Perry Palumbo

Perry Palumbo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102935
    Abstract: Nephelometric measuring devices are described. The nephelometric measuring devices can be configured such that an amount of scattered light having different pathlengths impingent upon one or more scattered-light detectors from a beam propagating through a suspension can result in substantially equivalent sensitivity and in correlation between the scattered-light detectors' response and a turbidity value of the suspension. The response of the scattered-light detector(s) receiving scattered light at a nephelometric angle of 85-110° from a beam of light propagating through the suspension can be in accordance to an equation selected from a group of non-linear equations where: x/y=aoxn+ ++a2x2+aix+ao; where “n” is an integer greater than 0; “x” is equal to the turbidity value of the suspension; “y” is equal to the response of the scattered-light detector; and “an” are calibration coefficients.
    Type: Application
    Filed: December 6, 2023
    Publication date: March 28, 2024
    Inventors: Perry PALUMBO, Elmar Grabert
  • Patent number: 11885748
    Abstract: Nephelometric measuring devices are described. The nephelometric measuring devices can be configured such that an amount of scattered light having different pathlengths impingent upon one or more scattered-light detectors from a beam propagating through a suspension can result in substantially equivalent sensitivity and in correlation between the scattered-light detectors' response and a turbidity value of the suspension. The response of the scattered-light detector(s) receiving scattered light at a nephelometric angle of 85-110° from a beam of light propagating through the suspension can be in accordance to an equation selected from a group of non-linear equations where: x/y=anxn+an?1xn?1+ . . . +a2x2+a1x+a0; where “n” is an integer greater than 0; “x” is equal to the turbidity value of the suspension; “y” is equal to the response of the scattered-light detector; and “an” are calibration coefficients.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: January 30, 2024
    Assignee: Tintometer GmbH
    Inventors: Perry Palumbo, Elmar Grabert
  • Patent number: 11460711
    Abstract: Embodiments of the present invention include a backscatter reductant anamorphic beam sampler. The beam sampler can be implemented to measure a power of a reference beam generated by an electromagnetic radiation source in proportion to a power of a working beam. The beam sampler can provide astigmatic correction to a divergence of the working beam along one axis orthogonal to a direction of propagation. The beam sampler can further be implemented to prevent backscatter reentrant radiation from impinging upon a photodetector of the beam sampler resulting in a reduction of error and instability in an assay of the working beam.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: October 4, 2022
    Assignee: TINTOMETER, GMBH
    Inventor: Perry Palumbo
  • Patent number: 11435277
    Abstract: Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can be configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: September 6, 2022
    Assignee: TINTOMETER, GMBH
    Inventor: Perry Palumbo
  • Publication number: 20220136976
    Abstract: Nephelometric measuring devices are described. The nephelometric measuring devices can be configured such that an amount of scattered light having different pathlengths impingent upon one or more scattered-light detectors from a beam propagating through a suspension can result in substantially equivalent sensitivity and in correlation between the scattered-light detectors' response and a turbidity value of the suspension. The response of the scattered-light detector(s) receiving scattered light at a nephelometric angle of 85-110° from a beam of light propagating through the suspension can be in accordance to an equation selected from a group of non-linear equations where: x/y=anxn+an?1xn?1+ . . . +a2x2+a1x+a0; where “n” is an integer greater than 0; “x” is equal to the turbidity value of the suspension; “y” is equal to the response of the scattered-light detector; and “an” are calibration coefficients.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 5, 2022
    Inventors: Perry Palumbo, Elmar Grabert
  • Publication number: 20210063238
    Abstract: Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can be configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 4, 2021
    Inventor: Perry Palumbo
  • Patent number: 10591455
    Abstract: An embodiment provides a method, including: operating a motor to position sample fluid within a fluid channel of a cuvette; transmitting light through an optical chamber of the cuvette; measuring a value of received light that has been transmitted through the optical chamber; comparing the measured value of light to one or more thresholds; determining a position of the sample fluid within the fluid channel based on a comparison from the comparing step; and generating a response based upon the position of the sample fluid with the fluid channel. Other aspects are described and claimed.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: March 17, 2020
    Assignee: HACH COMPANY
    Inventors: Jim Duncan, Aria Farjam, Jim Harbridge, Brian Harmon, Ulrich Lundgreen, Darren MacFarland, Leon Moore, Perry Palumbo, William Louis Pherigo, Jr., Robert Stoughton, Luke Waaler
  • Publication number: 20190369406
    Abstract: Embodiments of the present invention include a backscatter reductant anamorphic beam sampler. The beam sampler can be implemented to measure a power of a reference beam generated by an electromagnetic radiation source in proportion to a power of a working beam. The beam sampler can provide astigmatic correction to a divergence of the working beam along one axis orthogonal to a direction of propagation. The beam sampler can further be implemented to prevent backscatter reentrant radiation from impinging upon a photodetector of the beam sampler resulting in a reduction of error and instability in an assay of the working beam.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventor: Perry Palumbo
  • Patent number: 10416358
    Abstract: Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: September 17, 2019
    Inventor: Perry Palumbo
  • Patent number: 10384152
    Abstract: Embodiments of the present invention include a backscatter reductant anamorphic beam sampler. The beam sampler can be implemented to measure a power of a reference beam generated by an electromagnetic radiation source in proportion to a power of a working beam. The beam sampler can provide astigmatic correction to a divergence of the working beam along one axis orthogonal to a direction of propagation. The beam sampler can further be implemented to prevent backscatter from impinging upon a photodetector of the beam sampler resulting in a reduction of error and instability in measurements taken by the beam sampler.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: August 20, 2019
    Inventor: Perry Palumbo
  • Patent number: 10215745
    Abstract: An embodiment provides a cuvette, including: a body having a fluid channel therein; and an outer surface having encoded information disposed thereon and readable by a reader of a sample instrument. Other aspects are described and claimed.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: February 26, 2019
    Assignee: HACH COMPANY
    Inventors: Jim Duncan, Aria Farjam, Jim Harbridge, Brian Harmon, Ulrich Lundgreen, Darren MacFarland, Leon Moore, Perry Palumbo, William Louis Pherigo, Jr., Robert Stoughton, Luke Waaler
  • Patent number: 10078051
    Abstract: Embodiments of the present invention can be implemented to (i) verify that a liquid within a turbidity measuring device during an assay process is of the same origin of that upon which the assay was performed, (ii) verify a flow through the turbidity measuring device including, but not limited to, a turbidimeter, a nephelometer, a fluorimeter, or the like, and (iii) enact an alteration to measurement step(s) and/or determination step(s) of an assay process in correlation with one or more variables associated with the liquid sample including, but not limited to, flow rate, temperature, and pressure to reduce a standard error of the assay.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 18, 2018
    Inventor: Perry Palumbo
  • Publication number: 20180136123
    Abstract: Embodiments of the present invention can be implemented to (i) verify that a liquid within a turbidity measuring device during an assay process is of the same origin of that upon which the assay was performed, (ii) verify a flow through the turbidity measuring device including, but not limited to, a turbidimeter, a nephelometer, a fluorimeter, or the like, and (iii) enact an alteration to measurement step(s) and/or determination step(s) of an assay process in correlation with one or more variables associated with the liquid sample including, but not limited to, flow rate, temperature, and pressure to reduce a standard error of the assay.
    Type: Application
    Filed: March 30, 2017
    Publication date: May 17, 2018
    Inventor: Perry Palumbo
  • Patent number: 9914075
    Abstract: Embodiments of the present invention can include a turbidity measuring device. Typically, the turbidity measuring device can include a fluidic module and a measurement module. The measurement module can removably couple to the fluidic module and be implemented to measure a turbidity of a liquid passing through the fluidic module. The fluidic module can include a sub-assembly that can form a deaerator within the fluidic module. In one instance, the deaerator can be implemented to separate entrained air and/or other gases from a continuous flow of liquid by means of nucleation before the liquid is assayed.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 13, 2018
    Inventor: Perry Palumbo
  • Publication number: 20180065063
    Abstract: Embodiments of the present invention can include a turbidity measuring device. Typically, the turbidity measuring device can include a fluidic module and a measurement module. The measurement module can removably couple to the fluidic module and be implemented to measure a turbidity of a liquid passing through the fluidic module. The fluidic module can include a sub-assembly that can form a deaerator within the fluidic module. In one instance, the deaerator can be implemented to separate entrained air and/or other gases from a continuous flow of liquid by means of nucleation before the liquid is assayed.
    Type: Application
    Filed: June 3, 2016
    Publication date: March 8, 2018
    Inventor: Perry Palumbo
  • Publication number: 20170284990
    Abstract: An embodiment provides a method, including: operating a motor to position sample fluid within a fluid channel of a cuvette; transmitting light through an optical chamber of the cuvette; measuring a value of received light that has been transmitted through the optical chamber; comparing the measured value of light to one or more thresholds; determining a position of the sample fluid within the fluid channel based on a comparison from the comparing step; and generating a response based upon the position of the sample fluid with the fluid channel. Other aspects are described and claimed.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 5, 2017
    Inventors: Jim Duncan, Aria Farjam, Jim Harbridge, Brian Harmon, Ulrich Lundgreen, Darren MacFarland, Leon Moore, Perry Palumbo, William Louis Pherigo, JR., Robert Stoughton, Luke Waaler
  • Publication number: 20170248795
    Abstract: Embodiments of the present invention include a backscatter reductant anamorphic beam sampler. The beam sampler can be implemented to measure a power of a reference beam generated by an electromagnetic radiation source in proportion to a power of a working beam. The beam sampler can provide astigmatic correction to a divergence of the working beam along one axis orthogonal to a direction of propagation. The beam sampler can further be implemented to prevent backscatter from impinging upon a photodetector of the beam sampler resulting in a reduction of error and instability in measurements taken by the beam sampler.
    Type: Application
    Filed: June 7, 2016
    Publication date: August 31, 2017
    Inventor: Perry Palumbo
  • Publication number: 20170248740
    Abstract: Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.
    Type: Application
    Filed: October 20, 2016
    Publication date: August 31, 2017
    Inventor: Perry Palumbo
  • Patent number: 9719914
    Abstract: An embodiment provides a method, including: operating a motor to position sample fluid within a fluid channel of a cuvette; transmitting light through an optical chamber of the cuvette; measuring a value of received light that has been transmitted through the optical chamber; comparing the measured value of light to one or more thresholds; determining a position of the sample fluid within the fluid channel based on a comparison from the comparing step; and generating a response based upon the position of the sample fluid with the fluid channel. Other aspects are described and claimed.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: August 1, 2017
    Assignee: Hach Company
    Inventors: Jim Duncan, Aria Farjam, Jim Harbridge, Brian Harmon, Ulrich Lundgreen, Darren MacFarland, Leon Moore, Perry Palumbo, William Louis Pherigo, Jr., Robert Stoughton, Luke Waaler
  • Patent number: 9546944
    Abstract: A nephelometric process turbidimeter for measuring a turbidity of a liquid sample includes a transparent sample vial which comprises a sample vial lateral inner surface. A vial head comprises a vial head lateral inner surface. The vial head and the sample vial together define a sample volume of a liquid sample having a shape of a cylinder. A sample inlet opening is arranged at the vial head and comprises an inlet opening axis. A sample outlet opening is arranged at the cylindrical vial head lateral inner surface to be axially closer to the sample vial than to the sample outlet opening. The inlet opening axis is inclined with respect to an inlet cross plane with an inclination angle of 10° to 80°, and is angled with respect to a radius line from a middle of the cylinder to the sample inlet opening with a tangency angle of more than 15°.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: January 17, 2017
    Assignee: HACH LANGE GMBH
    Inventors: Bas De Heij, Perry Palumbo