Patents by Inventor Pervez Hassan Sagarwala

Pervez Hassan Sagarwala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6759717
    Abstract: A method of fabricating an integrated circuit having an n-channel and a p-channel transistor is provided. The method includes forming LDD regions for the n-channel transistors self-aligned to the gate electrodes. A first oxide is then formed over the structure and the n-type silicon regions are implanting with a p+ type dopant through the first oxide to form the source and drain regions of the p-channel transistor. A second oxide is formed over structure. The two oxide layers are then etched to provide sidewall spacers, having an inner portion formed from the first oxide and an outer portion formed from the second oxide. The p-type silicon regions are implanted with an n+ type dopant to form the low resistivity regions of the n-channel transistor. The p+ implants in the source and drain of the p-channel transistor typically outdiffuse toward the gates during further thermal processing of the device.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: July 6, 2004
    Assignee: STMicroelectronics, Inc.
    Inventors: Pervez Hassan Sagarwala, Mehdi Zamanian, Ravi Sundaresan
  • Publication number: 20010009796
    Abstract: A method of fabricating an integrated circuit having an n-channel and a p-channel transistor is provided. The method includes forming LDD regions for the n-channel transistors self-aligned to the gate electrodes. A first oxide is then formed over the structure and the n-type silicon regions are implanting with a p+ type dopant through the first oxide to form the source and drain regions of the p-channel transistor. A second oxide is formed over structure. The two oxide layers are then etched to provide sidewall spacers, having an inner portion formed from the first oxide and an outer portion formed from the second oxide. The p-type silicon regions are implanted with an n+ type dopant to form the low resistivity regions of the n-channel transistor. The p+ implants in the source and drain of the p-channel transistor typically outdiffuse toward the gates during further thermal processing of the device.
    Type: Application
    Filed: March 6, 2001
    Publication date: July 26, 2001
    Inventors: Pervez Hassan Sagarwala, Mehdi Zamanian, Ravi Sundaresan
  • Patent number: 6221709
    Abstract: A method of fabricating an integrated circuit having an n-channel and a p-channel transistor is provided. The method includes forming LDD regions for the n-channel transistors self-aligned to the gate electrodes. A first oxide is then formed over the structure and the n-type silicon regions are implanting with a p+ type dopant through the first oxide to form the source and drain regions of the p-channel transistor. A second oxide is formed over structure. The two oxide layers are then etched to provide sidewall spacers, having an inner portion formed from the first oxide and an outer portion formed from the second oxide. The p-type silicon regions are implanted with an n+ type dopant to form the low resistivity regions of the n-channel transistor. The p+ implants in the source and drain of the p-channel transistor typically outdiffuse toward the gates during further thermal processing of the device.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: April 24, 2001
    Assignee: STMicroelectronics, Inc.
    Inventors: Pervez Hassan Sagarwala, Mehdi Zamanian, Ravi Sundaresan
  • Patent number: 6128243
    Abstract: A method of operating a memory cell includes detecting a first power supply anomaly or condition. When the first power supply condition occurs, memory cell access to bit lines is disabled, a series of shadow memory access FETs within the memory cells are enabled and data from the memory cells are coupled to memory FETs within the memory cells to store data corresponding to the data from the memory cells in the memory FETs. The memory FETs include nanocrystals of semiconductor material in gate dielectrics of the FETs. Electrons are stored in the nanocrystals of semiconductor material to represent the data stored in the memory cell. When a second power supply condition is detected, the data stored in the memory FETs are written back to the memory cells.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: October 3, 2000
    Assignee: STMicroelectronics, Inc.
    Inventors: Tsiu C. Chan, Jim Brady, Pervez Hassan Sagarwala
  • Patent number: 6034886
    Abstract: A method of operating a memory cell includes detecting a first power supply anomaly or condition. When the first power supply condition occurs, memory cell access to bit lines is disabled, a series of shadow memory access FETs within the memory cells are enabled and data from the memory cells are coupled to memory FETs within the memory cells to store data corresponding to the data from the memory cells in the memory FETs. The memory FETs include nanocrystals of semiconductor material in gate dielectrics of the FETs. Electrons are stored in the nanocrystals of semiconductor material to represent the data stored in the memory cell. When a second power supply condition is detected, the data stored in the memory FETs are written back to the memory cells.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: March 7, 2000
    Assignee: STMicroelectronics, Inc.
    Inventors: Tsiu C. Chan, Jim Brady, Pervez Hassan Sagarwala
  • Patent number: 5929695
    Abstract: An integrated circuit includes a plurality of MOSFETs on a substrate. The plurality of MOSFETs preferably includes at least one MOSFET having a first conductivity type and at least one MOSFET having a second conductivity type. Each MOSFET has an initial threshold voltage. The integrated circuit also preferably includes first and second biasing circuits which selectively bias only a selected well a corresponding conductivity type of the plurality of MOSFETs to produce an absolute value of an effective threshold voltage of only the selected MOSFET which is lower than an absolute value of the initial threshold voltage thereof and thereby inhibit a high standby current for the integrated circuit. Method aspects of the invention are also disclosed.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: July 27, 1999
    Assignee: STMicroelectronics, Inc.
    Inventors: Tsiu Chiu Chan, Pervez Hassan Sagarwala