Patents by Inventor Peter A. Franklin
Peter A. Franklin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6541709Abstract: A multilayer thin film structure having defined strap repair lines thereon and a method for repairing interconnections in the multilayer thin film structure (MLTF) and/or making engineering changes (EC) are provided. The method determines interconnection defects in the MLTF at a thin film layer adjacent the top metal layer of the structure, defines the top surface metallization including a series of orthogonal X conductor lines and Y conductor lines using photoresist and lithography and additive or subtractive metallization techniques and then uses a phototool to selectively expose the photoresist to define top surface strap connections needed to repair the interconnections and/or make EC's, and forms the top surface metallization.Type: GrantFiled: November 1, 1996Date of Patent: April 1, 2003Assignee: International Business Machines CorporationInventors: Peter A. Franklin, Arthur G. Merryman, Rajesh S. Patel, Thomas A. Wassick
-
Patent number: 6455331Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is rotated during the second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.Type: GrantFiled: May 29, 2001Date of Patent: September 24, 2002Assignee: International Business Machines CorporationInventors: Roy Yu, Kamalesh S. Desai, Peter A. Franklin, Suryanarayana Kaja, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelli, Thomas A. Wassick
-
Patent number: 6427324Abstract: A multilayer thin film structure having defined strap repair lines thereon and a method for repairing interconnections in the multilayer thin film structure (MLTF) and/or making engineering changes (EC) are provided. The method comprises determining interconnection defects in the MLTF at a thin film layer adjacent the top metal layer of the structure, defining the top surface metallization including a series of orthogonal X conductor lines and Y conductor lines using photoresist and lithography and additive or phototool to selectively expose the photoresist to define top surface strap connections needed to repair the interconnections and/or make EC's, and forming the top surface metallization.Type: GrantFiled: July 13, 1998Date of Patent: August 6, 2002Assignee: International Business Machines CorporationInventors: Peter A. Franklin, Arthur G. Merryman, Rajesh S. Patel, Thomas A. Wassick
-
Publication number: 20010023081Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is rotated during the second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.Type: ApplicationFiled: May 29, 2001Publication date: September 20, 2001Inventors: Roy Yu, Kamalesh S. Desal, Peter A. Franklin, Suryanatayana Kala, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelll, Thomas A. Wassick
-
Patent number: 6248599Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.Type: GrantFiled: December 2, 1999Date of Patent: June 19, 2001Assignee: International Business Machines CorporationInventors: Roy Yu, Kamalesh S. Desai, Peter A. Franklin, Suryanarayana Kaja, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelli, Thomas A. Wassick
-
Patent number: 6235544Abstract: A multilayer thin film structure (MLTF) is provided having no extraneous via-pad connection strap plated metallurgy for defective vias needing removal. The method for making or repairing the MLTF comprises determining interconnection defects in the MLTF at a thin film layer adjacent to the top metal layer of the structure, applying a top surface dielectric layer and forming vias in the layer, applying a metal conducting layer and removing the metal conducting layer for via-pad connection straps of defective vias and at the intersection of XY lines used in the repair, defining the top surface metallization including a series of orthogonal X conductor repair lines and Y conductor repair lines using a photoresist and lithography and then using a phototool to selectively expose the photoresist to define top surface strap connections needed to repair the interconnections and/or make EC's, and forming the top surface metallization using additive or subtractive metallization techniques.Type: GrantFiled: April 20, 1999Date of Patent: May 22, 2001Assignee: International Business Machines CorporationInventors: Peter A. Franklin, Charles J. Hendricks, Richard P. Surprenant, Stephen J. Tirch, III, Thomas A. Wassick, James P. Wood
-
Patent number: 6054749Abstract: A process for partially repairing defective Multi-Chip Module (MCM) Thin-Film (TF) wiring nets. The process comprises the steps of locating a short circuit between any two nets of the MCM, identifying a site to cut in one of the two nets, and deleting an internal portion of one of the two nets at the identified site.Type: GrantFiled: April 23, 1999Date of Patent: April 25, 2000Assignee: International Business Machines CorporationInventors: Gerald K. Bartley, Peter A. Franklin, Carmine J. Mele, Arthur G. Merryman, John R. Pennacchia, Kurt A. Smith, Thomas A. Wassick, Thomas A. Wayson, Roy Yu
-
Patent number: 6048741Abstract: A device repair process that includes removing a passivation polyimide layer. The passivation polyimide layer is removed using a first-half ash followed by a second-half ash. The device is rotated during the second-half ash. The device is then cleaned using sodium hydroxide (NaOH) and a subsequent light ash step is implemented. After the passivation polyimide layer is removed, a seed layer is deposited on the device. A photoresist is formed on the seed layer and bond sites are formed in the photoresist. Repair metallurgy is plated through the bond sites. The bond sites are plated by coupling the device to a fixture and applying the current for plating to the fixture. The contact between the device and the fixture is made though bottom surface metallurgy. After plating, the residual seed layer is removed and a laser delete process is implemented to disconnect and isolate the nets of the device.Type: GrantFiled: October 31, 1997Date of Patent: April 11, 2000Assignee: International Business Machines CorporationInventors: Roy Yu, Kamalesh S. Desai, Peter A. Franklin, Suryanarayana Kaja, Kimberley A. Kelly, Yeeling L. Lee, Arthur G. Merryman, Frank R. Morelli, Thomas A. Wassick
-
Patent number: 5972723Abstract: A process for partially repairing defective Multi-Chip Module (MCM) Thin-Film (TF) wiring nets. The process comprises the steps of locating a short circuit between any two nets of the MCM, identifying a site to cut in one of the two nets, and deleting an internal portion of one of the two nets at the identified site.Type: GrantFiled: October 21, 1997Date of Patent: October 26, 1999Assignee: International Business Machines CorporationInventors: Gerald K. Bartley, Peter A. Franklin, Carmine J. Mele, Arthur G. Merryman, John R. Pennacchia, Kurt A. Smith, Thomas A. Wassick, Thomas A. Wayson, Roy Yu
-
Patent number: 5937269Abstract: A Process for graphically assisting the partial repair of defective MCM TF wiring nets. The process comprises the steps of inserting the wiring layer of the thin-film device in a tester, scanning the wiring layer of the thin-film device with the tester, identifying defects in the wiring nets, prioritizing the defects based on a function of each of the defective wiring nets, and repairing the defects based on priority.Type: GrantFiled: October 29, 1997Date of Patent: August 10, 1999Assignee: International Business Machines CorporationInventors: Roy Yu, Gerald K. Bartley, Peter A. Franklin, Carmine J. Mele, Arthur G. Merryman, John R. Pennacchia, Kurt A. Smith, Thomas A. Wassick, Thomas A. Wayson