Patents by Inventor Peter Aaron

Peter Aaron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12091160
    Abstract: Active surface structures comprise an exposed surface, a controlled group of MEMS (micro-electro-mechanical system) actuators, and a controlled region of the exposed surface corresponding to the controlled group. The controlled region has a first state, and a second state that is less textured than the first state. Active surface structures may be part of an apparatus that includes a controller and/or one or more sensors. The controller, sensors, and the controlled region may form a feedback loop in which the active surface structure is actively controlled.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: September 17, 2024
    Assignee: THE BOEING COMPANY
    Inventors: Joshua Benjamin Guerry, Peter Aaron Koch, Li Chun Chang, Robert Hans Thim
  • Publication number: 20240210950
    Abstract: Apparatuses, systems, and methods for open path laser spectroscopy with mobile platforms. An example system may include a first mobile platform and a second mobile platform, each of which supports a payload. A light beam directed from one payload to another may define a measurement path, which may be at a particular height above the ground. The payloads may determine a gas concentration along the measurement path. Wind information at the measurement height may be used to determine a gas flux. One or both of the mobile platforms may then move to a new location, and take a measurement along a new measurement path. By combining the measurement paths, gas flux through a flux surface may be determined.
    Type: Application
    Filed: February 20, 2024
    Publication date: June 27, 2024
    Applicant: Bridger Photonics, Inc.
    Inventors: Aaron Thomas Kreitinger, Michael James Thorpe, Peter Aaron Roos
  • Publication number: 20240168162
    Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for a rotating optical reflector. Optical systems may have a limited field of view, and so in order to expand the area that the optical system collects data from, the field of view of the optical system may be scanned across a target area. The present disclosure is directed to a rotating optical reflector, which includes a transmissive layer which refracts light onto a reflective layer, which has a normal which is not parallel to the axis about which the optical reflector is rotated. The optical reflector may be both statically and dynamically balanced, which may allow an increased size of the optical reflector, which in turn may increase the aperture of an optical system (e.g., a lidar system) using the rotating optical reflector.
    Type: Application
    Filed: January 26, 2024
    Publication date: May 23, 2024
    Applicant: Bridger Photonics, Inc.
    Inventors: Peter Aaron Roos, Michael James Thorpe, Aaron Thomas Kreitinger, Christopher Ray Wilson
  • Patent number: 11940817
    Abstract: Apparatuses, systems, and methods for open path laser spectroscopy with mobile platforms. An example system may include a first mobile platform and a second mobile platform, each of which supports a payload. A light beam directed from one payload to another may define a measurement path, which may be at a particular height above the ground. The payloads may determine a gas concentration along the measurement path. Wind information at the measurement height may be used to determine a gas flux. One or both of the mobile platforms may then move to a new location, and take a measurement along a new measurement path. By combining the measurement paths, gas flux through a flux surface may be determined.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: March 26, 2024
    Assignee: Bridger Photonics, Inc.
    Inventors: Aaron Thomas Kreitinger, Michael James Thorpe, Peter Aaron Roos
  • Patent number: 11921211
    Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for a rotating optical reflector. Optical systems may have a limited field of view, and so in order to expand the area that the optical system collects data from, the field of view of the optical system may be scanned across a target area. The present disclosure is directed to a rotating optical reflector, which includes a transmissive layer which refracts light onto a reflective layer, which has a normal which is not parallel to the axis about which the optical reflector is rotated. The optical reflector may be both statically and dynamically balanced, which may allow an increased size of the optical reflector, which in turn may increase the aperture of an optical system (e.g., a lidar system) using the rotating optical reflector.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: March 5, 2024
    Assignee: Bridger Photonics, Inc.
    Inventors: Peter Aaron Roos, Michael James Thorpe, Aaron Thomas Kreitinger, Christopher Ray Wilson
  • Publication number: 20230228876
    Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for a rotating optical reflector. Optical systems may have a limited field of view, and so in order to expand the area that the optical system collects data from, the field of view of the optical system may be scanned across a target area. The present disclosure is directed to a rotating optical reflector, which includes a transmissive layer which refracts light onto a reflective layer, which has a normal which is not parallel to the axis about which the optical reflector is rotated. The optical reflector may be both statically and dynamically balanced, which may allow an increased size of the optical reflector, which in turn may increase the aperture of an optical system (e.g., a lidar system) using the rotating optical reflector.
    Type: Application
    Filed: January 30, 2023
    Publication date: July 20, 2023
    Applicant: Bridger Photonics, Inc.
    Inventors: Peter Aaron Roos, Michael James Thorpe, Aaron Thomas Kreitinger, Christopher Ray Wilson
  • Patent number: 11604280
    Abstract: Examples of FMCW laser radar systems and methods described herein may segment the processing of a broader bandwidth frequency chirp into multiple shorter-duration (e.g., lower bandwidth) frequency chirps. This segmentation may have the benefits in some examples of improving the measurement duty cycle and range resolution, and/or allowing for more flexible processing, and/or enabling improved detection of more distant objects.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: March 14, 2023
    Assignee: Bridger Photonics, Inc.
    Inventors: Peter Aaron Roos, Michael James Thorpe, Jason Kenneth Brasseur
  • Patent number: 11592563
    Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for a rotating optical reflector. Optical systems may have a limited field of view, and so in order to expand the area that the optical system collects data from, the field of view of the optical system may be scanned across a target area. The present disclosure is directed to a rotating optical reflector, which includes a transmissive layer which refracts light onto a reflective layer, which has a normal which is not parallel to the axis about which the optical reflector is rotated. The optical reflector may be both statically and dynamically balanced, which may allow an increased size of the optical reflector, which in turn may increase the aperture of an optical system (e.g., a lidar system) using the rotating optical reflector.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: February 28, 2023
    Inventors: Peter Aaron Roos, Michael James Thorpe, Aaron Thomas Kreitinger, Christopher Ray Wilson
  • Publication number: 20220388632
    Abstract: Active surface structures comprise an exposed surface, a controlled group of MEMS (micro-electro-mechanical system) actuators, and a controlled region of the exposed surface corresponding to the controlled group. The controlled region has a first state, and a second state that is less textured than the first state. Active surface structures may be part of an apparatus that includes a controller and/or one or more sensors. The controller, sensors, and the controlled region may form a feedback loop in which the active surface structure is actively controlled.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 8, 2022
    Inventors: Joshua Benjamin Guerry, Peter Aaron Koch, Li Chun Chang, Robert Hans Thim
  • Patent number: 11447237
    Abstract: Active superhydrophobic surface structures are actively-controlled surface structures exhibiting a superhydrophobic state and an ordinary state. Active superhydrophobic surface structures comprise an outer elastomeric covering defining an exposed surface, a controlled group of MEMS (micro-electro-mechanical system) actuators at least covered by the elastomeric covering, and, a controlled region of the exposed surface corresponding to the controlled group. The controlled region has a superhydrophobic state in which the controlled region is textured. The controlled region also has an ordinary state in which the controlled region is smooth (i.e., less textured than in the superhydrophobic state). Active superhydrophobic surface structures may be part of an apparatus that includes a controller and/or one or more sensors. The controller, sensors, and the controlled region may form a feedback loop in which the active superhydrophobic surface is actively controlled.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: September 20, 2022
    Assignee: The Boeing Company
    Inventors: Joshua Benjamin Guerry, Peter Aaron Koch, Li Chun Chang, Robert Hans Thim
  • Patent number: 11422244
    Abstract: Examples are provided that use multiple analog-to-digital converters (ADCs) to disambiguate FMCW ladar range returns from one or more targets that may be greater than the Nyquist frequencies of one or more of the ADCs. Examples are also provided that use a first and a second laser FMCW return signal (e.g., reflected beam) in combination with two or more ADCs to disambiguate one or more target ranges (e.g., distances to one or more objects).
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 23, 2022
    Assignee: Bridger Photonics, Inc.
    Inventors: Michael James Thorpe, Peter Aaron Roos
  • Patent number: 11422258
    Abstract: Methods and apparatuses are described for frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR). Examples are provided where high-closed-loop bandwidth, active feedback applied to laser frequency chirps may provide increases in the free-running laser coherence length for long-range FMCW distance measurements. Examples are provided that use an asymmetric sideband generator within an active feedback loop for higher closed-loop bandwidth. Examples of using a single shared reference interferometer within multiple active feedback loops that may be used for increasing the coherence length of multiple chirped lasers are described. Example calibrators are also described.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 23, 2022
    Assignee: Bridger Photonics, Inc.
    Inventors: Michael James Thorpe, Jason Kenneth Brasseur, Peter Aaron Roos, Nathan Joseph Greenfield, Aaron Thomas Kreitinger
  • Publication number: 20220082495
    Abstract: Apparatuses, systems, and methods for open path laser spectroscopy with mobile platforms. An example system may include a first mobile platform and a second mobile platform, each of which supports a payload. A light beam directed from one payload to another may define a measurement path, which may be at a particular height above the ground. The payloads may determine a gas concentration along the measurement path. Wind information at the measurement height may be used to determine a gas flux. One or both of the mobile platforms may then move to a new location, and take a measurement along a new measurement path. By combining the measurement paths, gas flux through a flux surface may be determined.
    Type: Application
    Filed: January 15, 2020
    Publication date: March 17, 2022
    Inventors: Aaron Thomas Kreitinger, Michael James Thorpe, Peter Aaron Roos
  • Publication number: 20210190953
    Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for a rotating optical reflector. Optical systems may have a limited field of view, and so in order to expand the area that the optical system collects data from, the field of view of the optical system may be scanned across a target area. The present disclosure is directed to a rotating optical reflector, which includes a transmissive layer which refracts light onto a reflective layer, which has a normal which is not parallel to the axis about which the optical reflector is rotated. The optical reflector may be both statically and dynamically balanced, which may allow an increased size of the optical reflector, which in turn may increase the aperture of an optical system (e.g., a lidar system) using the rotating optical reflector.
    Type: Application
    Filed: October 17, 2018
    Publication date: June 24, 2021
    Inventors: Peter Aaron Roos, Michael James Thorpe, Aaron Thomas Kreitinger, Christopher Ray Wilson
  • Publication number: 20200278432
    Abstract: Examples are provided that use multiple analog-to-digital converters (ADCs) to disambiguate FMCW ladar range returns from one or more targets that may be greater than the Nyquist frequencies of one or more of the ADCs. Examples are also provided that use a first and a second laser FMCW return signal (e.g., reflected beam) in combination with two or more ADCs to disambiguate one or more target ranges (e.g., distances to one or more objects).
    Type: Application
    Filed: September 25, 2018
    Publication date: September 3, 2020
    Inventors: Michael James Thorpe, Peter Aaron Roos
  • Publication number: 20200241139
    Abstract: Examples of FMCW laser radar systems and methods described herein may segment the processing of a broader bandwidth frequency chirp into multiple shorter-duration (e.g., lower bandwidth) frequency chirps. This segmentation may have the benefits in some examples of improving the measurement duty cycle and range resolution, and/or allowing for more flexible processing, and/or enabling improved detection of more distant objects.
    Type: Application
    Filed: October 2, 2018
    Publication date: July 30, 2020
    Inventors: Peter Aaron Roos, Michael James Thorpe, Jason Kenneth Brasseur
  • Publication number: 20200011994
    Abstract: Methods and apparatuses are described for frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR). Examples are provided where high-closed-loop bandwidth, active feedback applied to laser frequency chirps may provide increases in the free-running laser coherence length for long-range FMCW distance measurements. Examples are provided that use an asymmetric sideband generator within an active feedback loop for higher closed-loop bandwidth. Examples of using a single shared reference interferometer within multiple active feedback loops that may be used for increasing the coherence length of multiple chirped lasers are described. Example calibrators are also described.
    Type: Application
    Filed: March 16, 2018
    Publication date: January 9, 2020
    Applicant: Bridger Photonics, Inc.
    Inventors: Michael James Thorpe, Jason Kenneth Brasseur, Peter Aaron Roos, Nathan Joseph Greenfield, Aaron Thomas Kreitinger
  • Publication number: 20190329872
    Abstract: Active superhydrophobic surface structures are actively-controlled surface structures exhibiting a superhydrophobic state and an ordinary state. Active superhydrophobic surface structures comprise an outer elastomeric covering defining an exposed surface, a controlled group of MEMS (micro-electro-mechanical system) actuators at least covered by the elastomeric covering, and, a controlled region of the exposed surface corresponding to the controlled group. The controlled region has a superhydrophobic state in which the controlled region is textured. The controlled region also has an ordinary state in which the controlled region is smooth (i.e., less textured than in the superhydrophobic state). Active superhydrophobic surface structures may be part of an apparatus that includes a controller and/or one or more sensors. The controller, sensors, and the controlled region may form a feedback loop in which the active superhydrophobic surface is actively controlled.
    Type: Application
    Filed: July 10, 2019
    Publication date: October 31, 2019
    Inventors: Joshua Benjamin Guerry, Peter Aaron Koch, Li Chun Chang, Robert Hans Thim
  • Publication number: 20160114883
    Abstract: Active superhydrophobic surface structures are actively-controlled surface structures exhibiting a superhydrophobic state and an ordinary state. Active superhydrophobic surface structures comprise an outer elastomeric covering defining an exposed surface, a controlled group of MEMS (micro-electro-mechanical system) actuators at least covered by the elastomeric covering, and, a controlled region of the exposed surface corresponding to the controlled group. The controlled region has a superhydrophobic state in which the controlled region is textured. The controlled region also has an ordinary state in which the controlled region is smooth (i.e., less textured than in the superhydrophobic state). Active superhydrophobic surface structures may be part of an apparatus that includes a controller and/or one or more sensors. The controller, sensors, and the controlled region may form a feedback loop in which the active superhydrophobic surface is actively controlled.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 28, 2016
    Applicant: The Boeing Company
    Inventors: Joshua Benjamin Guerry, Peter Aaron Koch, Li Chun Chang, Robert Hans Thim
  • Patent number: 8982663
    Abstract: A disclosed subsurface imaging method begins by obtaining initial signals from a geophysical survey that has been acquired with multiple geophysical energy sources actuated in a plurality of firing sequences, each sequence having a known time delay between the firing times of each source. The initial signals are grouped into gathers of signals acquired from multiple firing sequences. For each gather, initial estimates of the first and second source wave fields are determined. Quieted signals for the first source are then generated to represent the initial signals minus a current estimate of the second source wave field. A coherent energy separation operation is applied to the quieted signals to obtain a refined estimate for the first source wave field.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: March 17, 2015
    Assignee: PGS Geophysical AS
    Inventors: Peter Aaron, Stian Hegna, Gregory Parkes