Patents by Inventor Peter Ajemba

Peter Ajemba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210077717
    Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Publication number: 20210077718
    Abstract: Medical devices, systems and methods are provided.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Steven C. Jacks, Peter Ajemba, Akhil Srinivasan, Jacob E. Pananen, Sarkis Aroyan, Pablo Vazquez, Tri T. Dang, Ashley N. Sullivan, Raghavendhar Gautham
  • Publication number: 20200245910
    Abstract: A continuous glucose monitoring system may utilize electrode current (Isig) signals, Electrochemical Impedance Spectroscopy (EIS), and Vcntr values to optimize sensor glucose (SG) calculation in such a way as to enable reduction of the need for blood glucose (BG) calibration requests from users.
    Type: Application
    Filed: January 27, 2020
    Publication date: August 6, 2020
    Inventors: Georgios Mallas, Andrea Varsavsky, Peter Ajemba, Jeffrey Nishida, Keith Nogueira, Elaine Gee, Leonardo Nava-Guerra, Jing Liu, Sadaf S. Seleh, Taly G, Engel, Benyamin Grosman, Steven Lai, Luis A. Torres, Chi A. Tran, David M. Sniecinski
  • Publication number: 20190175080
    Abstract: A continuous glucose monitoring system may employ complex redundancy to take operational advantage of disparate characteristics of two or more dissimilar, or non-identical, sensors, including, e.g., characteristics relating to hydration, stabilization, and durability of such sensors. Fusion algorithms, Electrochemical Impedance Spectroscopy (EIS), and advanced Application Specific Integrated Circuits (ASICs) may be used to implement use of such redundant glucose sensors, devices, and sensor systems in such a way as to bridge the gaps between fast start-up, sensor longevity, and accuracy of calibration-free algorithms. Systems, devices, and algorithms are described for achieving a long-wear and reliable sensor which also minimizes, or eliminates, the need for BG calibration, thereby providing a calibration-free, or near calibration-free, sensor.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Andrea Varsavsky, Jeffrey Nishida, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Publication number: 20190175079
    Abstract: A method for optional external calibration of a calibration-free glucose sensor uses values of measured working electrode current (Isig) and EIS data to calculate a final sensor glucose (SG) value. Counter electrode voltage (Vcntr) may also be used as an input. Raw Isig and Vcntr values may be preprocessed, and low-pass filtering, averaging, and/or feature generation may be applied. SG values may be generated using one or more models for predicting SG calculations. When an external blood glucose (BG) value is available, the BG value may also be used in calculating the SG values. A SG variance estimate may be calculated for each predicted SG value and modulated, with the modulated SG values then fused to generate a fused SG. A Kalman filter, as well as error detection logic, may be applied to the fused SG value to obtain a final SG, which is then displayed to the user.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Jeffrey Nishida, Andrea Varsavsky, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Publication number: 20190076067
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 14, 2019
    Inventors: Peter Ajemba, Keith Nogueira, Brian T. Kannard
  • Publication number: 20190076070
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 14, 2019
    Inventors: Keith Nogueira, Peter Ajemba, Michael E. Miller, Steven C. Jacks, Jeffrey Nishida, Andy Y. Tsai, Andrea Varsavsky
  • Publication number: 20190076066
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 14, 2019
    Inventors: Peter Ajemba, Keith Nogueira, Jeffrey Nishida, Andy Y. Tsai
  • Patent number: 9971931
    Abstract: Apparatus, methods, and computer-readable media are provided for segmentation, processing (e.g., preprocessing and/or postprocessing), and/or feature extraction from tissue images such as, for example, images of nuclei and/or cytoplasm. Tissue images processed by various embodiments described herein may be generated by Hematoxylin and Eosin (H&E) staining, immunofluorescence (IF) detection, immunohistochemistry (IHC), similar and/or related staining processes, and/or other processes. Predictive features described herein may be provided for use in, for example, one or more predictive models for treating, diagnosing, and/or predicting the occurrence (e.g., recurrence) of one or more medical conditions such as, for example, cancer or other types of disease.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: May 15, 2018
    Assignee: FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
    Inventors: Peter Ajemba, Richard Scott, Janakiramanan Ramachandran, Jack Zeineh, Michael Donovan, Gerardo Fernandez, Qiuhua Liu, Faisal Khan
  • Publication number: 20180025212
    Abstract: Apparatus, methods, and computer-readable media are provided for segmentation, processing (e.g., preprocessing and/or postprocessing), and/or feature extraction from tissue images such as, for example, images of nuclei and/or cytoplasm. Tissue images processed by various embodiments described herein may be generated by Hematoxylin and Eosin (H&E) staining, immunofluorescence (IF) detection, immunohistochemistry (IHC), similar and/or related staining processes, and/or other processes. Predictive features described herein may be provided for use in, for example, one or more predictive models for treating, diagnosing, and/or predicting the occurrence (e.g., recurrence) of one or more medical conditions such as, for example, cancer or other types of disease.
    Type: Application
    Filed: July 26, 2017
    Publication date: January 25, 2018
    Applicant: Fundação D. Anna de Sommer Champalimaud e Dr. Carlos Montez Champalimaud,dba Champalimaud Fnd.
    Inventors: Peter Ajemba, Richard Scott, Janakiramanan Ramachandran, Jack Zeineh, Michael Donovan, Gerardo Fernandez, Qiuhua Liu, Faisal Khan
  • Patent number: 9754152
    Abstract: Apparatus, methods, and computer-readable media are provided for segmentation, processing (e.g., preprocessing and/or postprocessing), and/or feature extraction from tissue images such as, for example, images of nuclei and/or cytoplasm. Tissue images processed by various embodiments described herein may be generated by Hematoxylin and Eosin (H&E) staining, immunofluorescence (IF) detection, immunohistochemistry (IHC), similar and/or related staining processes, and/or other processes. Predictive features described herein may be provided for use in, for example, one or more predictive models for treating, diagnosing, and/or predicting the occurrence (e.g., recurrence) of one or more medical conditions such as, for example, cancer or other types of disease.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 5, 2017
    Assignee: FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
    Inventors: Peter Ajemba, Richard Scott, Janakiramanan Ramachandran, Jack Zeineh, Michael Donovan, Gerardo Fernandez, Qiuhua Liu, Faisal Khan
  • Publication number: 20160188954
    Abstract: Apparatus, methods, and computer-readable media are provided for segmentation, processing (e.g., preprocessing and/or postprocessing), and/or feature extraction from tissue images such as, for example, images of nuclei and/or cytoplasm. Tissue images processed by various embodiments described herein may be generated by Hematoxylin and Eosin (H&E) staining, immunofluorescence (IF) detection, immunohistochemistry (IHC), similar and/or related staining processes, and/or other processes. Predictive features described herein may be provided for use in, for example, one or more predictive models for treating, diagnosing, and/or predicting the occurrence (e.g., recurrence) of one or more medical conditions such as, for example, cancer or other types of disease.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Applicant: Fundacao D. Anna Sommer Champalimaud e Dr. Carlos Montez Champalimaud, dba Champalimaud Fnd
    Inventors: Peter Ajemba, Richard Scott, Janakiramanan Ramachandran, Jack Zeineh, Michael Donovan, Gerardo Fernandez, Qiuhua Liu, Faisal Khan
  • Patent number: 9286505
    Abstract: Apparatus, methods, and computer-readable media are provided for segmentation, processing (e.g., preprocessing and/or postprocessing), and/or feature extraction from tissue images such as, for example, images of nuclei and/or cytoplasm. Tissue images processed by various embodiments described herein may be generated by Hematoxylin and Eosin (H&E) staining, immunofluorescence (IF) detection, immunohistochemistry (IHC), similar and/or related staining processes, and/or other processes. Predictive features described herein may be provided for use in, for example, one or more predictive models for treating, diagnosing, and/or predicting the occurrence (e.g., recurrence) of one or more medical conditions such as, for example, cancer or other types of disease.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: March 15, 2016
    Assignee: FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
    Inventors: Peter Ajemba, Richard Scott, Janakiramanan Ramachandran, Jack Zeineh, Michael Donovan, Gerardo Fernandez, Qiuhua Liu, Faisal Khan