Patents by Inventor Peter B Howell, Jr.

Peter B Howell, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9649803
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols. Uses include extruding materials and/or fabricating structures.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 16, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Mott, Peter B. Howell, Jr., Frances S. Ligler, Stephanie Fertig, Aron Bobrowski
  • Patent number: 9573311
    Abstract: A sheath flow system having a channel with first and second fluid transporting structures located on opposing surfaces facing one another across the channel in the top and bottom surfaces of the channel situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 21, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Mott, Peter B. Howell, Jr., Frances S. Ligler, Stephanie Fertig, Aron Bobrowski
  • Patent number: 9527050
    Abstract: A magnetic bead trap-and-mixer includes a channel having openings at opposing ends, and a rotor adjacent to the channel and comprising a permanent magnet, wherein the rotor is adapted to apply a magnetic field to the channel of sufficient strength to direct the movement of magnetic beads therein. In aspects, the channel is straight and/or has narrowed end. In further aspects, the rotor generates in the channel areas of areas of strong magnetic fields alternating with areas of very weak magnetic fields and the strong magnetic fields extend entirely across the channel.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 27, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Peter B Howell, Jr., Richard Eitel, Joel P Golden, Frances S Ligler
  • Publication number: 20150343691
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols. Uses include extruding materials and/or fabricating structures.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Mott, Peter B. Howell, JR., Frances S. Ligler, Stephanie Fertig, Aron Bobrowski
  • Publication number: 20150266226
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols. Uses include extruding materials and/or fabricating structures.
    Type: Application
    Filed: May 29, 2015
    Publication date: September 24, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Mott, Peter B. Howell, JR., Frances S. Ligler, Stephanie Fertig, Aron Bobrowski
  • Patent number: 9110010
    Abstract: A device having: a laminar flow channel for liquids; two or more electrodes; a confining fluid inlet; a sample inlet; and a meter for measuring the impedance of any fluid between the electrodes. The device may have one or more specific binding sites, or it may have sheathing and unsheathing fluid transporting structures. A method of: providing the device; flowing a confining fluid and a conductive liquid that may contain cells or particles through the channel as described herein; and measuring the impedance between the electrodes.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: August 18, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel A. Ateya, Peter B Howell, Jr., Frances S. Ligler
  • Patent number: 9067204
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: June 30, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David Mott, Peter B Howell, Jr., Frances S Ligler, Stephanie Fertig, Aron Bobrowski
  • Publication number: 20150021186
    Abstract: Flow step focusing isolates and concentrates a molecule of interest by flowing a liquid comprising a molecule of interest through a main channel having an inlet and an outlet with application of a first pressure at the inlet; applying a voltage along the channel during the flowing, wherein the voltage is configured to have a polarity such that it drives the molecule of interest in a direction opposite the flow of the liquid; controlling the first pressure and/or the voltage in a manner so as to trap and concentrate the molecule of interest in a region of the main channel; and removing the concentrated molecule of interest from the channel by recovering a portion of the liquid from a side channel diverging from the main channel, wherein the side channel is maintained at a pressure lower than the first pressure. Also disclosed is an apparatus for such.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Peter B. Howell, JR.
  • Patent number: 8871072
    Abstract: Flow step focusing isolates and concentrates a molecule of interest by flowing a liquid comprising a molecule of interest through a main channel having an inlet and an outlet with application of a first pressure at the inlet; applying a voltage along the channel during the flowing, wherein the voltage is configured to have a polarity such that it drives the molecule of interest in a direction opposite the flow of the liquid; controlling the first pressure and/or the voltage in a manner so as to trap and concentrate the molecule of interest in a region of the main channel; and removing the concentrated molecule of interest from the channel by recovering a portion of the liquid from a side channel diverging from the main channel, wherein the side channel is maintained at a pressure lower than the first pressure. Also disclosed is an apparatus for such.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: October 28, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Peter B. Howell, Jr.
  • Publication number: 20140087466
    Abstract: A fiber includes one or more layers of polymer surrounding a central lumen, and living animal cells disposed within the lumen and/or within at least one of the one or more layers, wherein the fiber has an outer diameter of between 5 and 8000 microns and wherein each individual layer of polymer has a thickness of between 0.1 and 250 microns. Also disclosed are model tissues including such fibers, and method of making such fibers. The fibers can serve as synthetic blood vessels, ducts, or nerves.
    Type: Application
    Filed: March 4, 2013
    Publication date: March 27, 2014
    Inventors: Frances S. Ligler, André A. Adams, Michael Daniele, David R. Mott, Peter B. Howell, JR., Stephanie Fertig, Aron Bobrowski
  • Publication number: 20140017149
    Abstract: A sheath flow system having a channel with first and second fluid transporting structures located on opposing surfaces facing one another across the channel in the top and bottom surfaces of the channel situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity.
    Type: Application
    Filed: December 27, 2012
    Publication date: January 16, 2014
    Inventors: David R. Mott, Peter B. Howell, JR., Frances S. Ligler, Stephanie Fertig, Aron Bobrowski
  • Patent number: 8577658
    Abstract: A computational “toolbox” can be used for the a priori design of optimized fluidic components. These components include a channel under low-Reynolds number, pressure-driven flow, with an arrangement of grooves cut into the top and/or bottom to generate a tailored cross-channel flow. An advection map for each feature (i.e., groove of a particular shape and orientation) predicts the lateral transport of fluid within the channel due to that feature. Applying the advection maps in sequence generates a representation of the outflow distribution for complex designs that combine one or more features. Therefore, the effect of the complex three-dimensional flow field can be predicted without solving the governing flow equations through the composite geometry, and the resulting distribution of fluids in the channel is used to evaluate how well a component performs a specified task. The toolbox is applied to determine optimal combinations of features for specified mixer sizes and mixing metrics.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: November 5, 2013
    Assignee: The United States of America as repesented by the Secretary of the Navy
    Inventors: Peter B. Howell, Jr., David Mott, Joel P. Golden
  • Publication number: 20130075257
    Abstract: Flow step focusing isolates and concentrates a molecule of interest by flowing a liquid comprising a molecule of interest through a main channel having an inlet and an outlet with application of a first pressure at the inlet; applying a voltage along the channel during the flowing, wherein the voltage is configured to have a polarity such that it drives the molecule of interest in a direction opposite the flow of the liquid; controlling the first pressure and/or the voltage in a manner so as to trap and concentrate the molecule of interest in a region of the main channel; and removing the concentrated molecule of interest from the channel by recovering a portion of the liquid from a side channel diverging from the main channel, wherein the side channel is maintained at a pressure lower than the first pressure. Also disclosed is an apparatus for such.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 28, 2013
    Inventor: Peter B. Howell, JR.
  • Patent number: 8398935
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. A wide variety of shapes of fibers and other materials can be produced from this system through the use of polymerizable material.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 19, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Peter B. Howell, Jr., Frances S. Ligler, Adam R. Shields
  • Patent number: 8361413
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: January 29, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David Mott, Peter B Howell, Jr., Frances S Ligler, Stephanie Fertig, Aron Bobrowski
  • Publication number: 20120052521
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols.
    Type: Application
    Filed: January 10, 2011
    Publication date: March 1, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David Mott, Peter B. Howell, JR., Frances S. Ligler, Stephanie Fertig, Aron Bobrowski
  • Publication number: 20110301049
    Abstract: A micro-fluidic device and a method of use are disclosed. The device includes a micro-channel with an inlet port at a first end and an outlet port at a second end. A first fluid, such as air or liquid or both, is disposed in the micro-channel. A focusing structure extends into the micro-channel, whereby when a pulse of a second fluid is introduced to the channel, the pulse advances adjacent sides of the micro-channel at a faster rate than would occur without the focusing structure.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 8, 2011
    Inventors: Joel P. Golden, Peter B. Howell, JR.
  • Publication number: 20110193259
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. A wide variety of shapes of fibers and other materials can be produced from this system through the use of polymerizable material.
    Type: Application
    Filed: April 7, 2011
    Publication date: August 11, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Peter B. Howell, JR., Frances S. Ligler, Adam R. Shields
  • Publication number: 20110188339
    Abstract: A magnetic bead trap-and-mixer includes a channel having openings at opposing ends, and a rotor adjacent to the channel and comprising a permanent magnet, wherein the rotor is adapted to apply a magnetic field to the channel of sufficient strength to direct the movement of magnetic beads therein. In aspects, the channel is straight and/or has narrowed end. In further aspects, the rotor generates in the channel areas of areas of strong magnetic fields alternating with areas of very weak magnetic fields and the strong magnetic fields extend entirely across the channel.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Inventors: Peter B. Howell, JR., Richard Eitel, Joel P. Golden, Frances S. Ligler
  • Publication number: 20090208372
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. The design can be readily incorporated into microfluidic chips without the need for special manufacturing protocols.
    Type: Application
    Filed: June 9, 2006
    Publication date: August 20, 2009
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventors: David Mott, Peter B. Howell, JR., Frances S. Ligler, Stephanie Fertig, Aron Bobrowski