Patents by Inventor Peter B. Tarsa

Peter B. Tarsa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7504263
    Abstract: A method for detection and measurement of trace species in a gas or liquid sample is provided. The method comprises forming a sensor from an optical fiber by tapering a portion the optical fiber along a length thereof, exposing the tapered portion of the optic fiber to the sample gas or sample liquid, emitting radiation from a coherent source, coupling at least a portion of the radiation emitted from the coherent source into the fiber optic ring, receiving a portion of the radiation traveling in the fiber optic ring, and determining the level of trace species in the gas or liquid sample based on a rate of decay of the radiation within the fiber optic ring.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 17, 2009
    Assignee: Trustees of Princeton University
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Patent number: 7504068
    Abstract: An apparatus for detection and measurement of trace species in a gas or liquid sample. A sensor of a ring down cell formed from an optical fiber is exposed to the sample gas or liquid. A coherent source emits radiation into the optical fiber loop, which in turn is received at an output coupler. The fiber optic ring is coupled to a sensor which has a portion thereof, between the input and output, exposed to the sample gas or sample liquid. The sensor has an enhanced evanescent region. A processor is coupled to the receiver and determines the level of trace species in the gas or liquid sample based on the rate of decay of the radiation within the fiber optic ring.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 17, 2009
    Assignee: Trustees of Princeton University
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Patent number: 7352468
    Abstract: An apparatus and method for use with a coherent optical source to detect environmental changes. The apparatus comprises: an optical cavity, including an input coupling port, and an optical fiber section; a detector optically coupled to the optical cavity to monitor radiation in the optical cavity; and a processor electrically coupled to the detector for analyzing the environmental changes adjacent the detection portion of the optical cavity based on a rate of decay of the radiation in the optical cavity monitored by the detector. The optical fiber section of the optical cavity includes a detection portion coated with a conductive layer capable of supporting a surface plasmon to provide cavity loss. The surface plasmon is responsive to the environmental changes adjacent the detection portion. The coherent optical source is optically coupled to the input coupling port of the optical cavity to provide the radiation in the optical cavity.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: April 1, 2008
    Assignee: Trustees of Princeton University
    Inventor: Peter B. Tarsa
  • Patent number: 7318909
    Abstract: An apparatus for detection and measurement of trace species in a gas or liquid sample. A sensor of a ring down cell formed from an optical fiber is exposed to the sample gas or liquid. A coherent source emits radiation into the optical fiber loop, which in turn is received at an output coupler. The fiber optic ring is coupled to a sensor which has a portion thereof, between the input and output, exposed to the sample gas or sample liquid. The sensor has an enhanced evanescent region. A processor is coupled to the receiver and determines the level of trace species in the gas or liquid sample based on the rate of decay of the radiation within the fiber optic ring.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: January 15, 2008
    Assignee: Trustees of Princeton University
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Patent number: 7046362
    Abstract: An apparatus for detection and measurement of trace species in a gas or liquid sample. A ring down cell formed from a fiber optic ring is exposed to the sample gas or liquid. A coherent source emits radiation into the fiber optic ring, which in turn is received at an output thereof. The fiber optic ring has a portion thereof, between the input and output, exposed to the sample gas or sample liquid. A processor is coupled to the receiver and determines the level of trace species in the gas or liquid sample based on the rate of decay of the radiation within the fiber optic ring.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: May 16, 2006
    Assignee: Trustees of Princeton University
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Publication number: 20040118997
    Abstract: An apparatus for measurement of strain in a material. The apparatus comprises a passive fiber optic ring; at least one sensor having a predetermined shape and in line with the fiber optic ring, the at least one sensor coupled to the substrate; coupling means for i) introducing a portion of radiation emitted by the coherent source to the passive fiber optic ring and ii) receiving a portion of the radiation resonant in the passive fiber optic ring; a detector for detecting a level of the radiation received by the coupling means and generating a signal responsive thereto; and a processor coupled to the detector for determining a level of the strain inducing into the substrate based on a rate of decay of the signal generated by the detector.
    Type: Application
    Filed: August 20, 2003
    Publication date: June 24, 2004
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Publication number: 20030107739
    Abstract: An apparatus for detection and measurement of trace species in a gas or liquid sample. A ring down cell formed from a fiber optic ring is exposed to the sample gas or liquid. A coherent source emits radiation into the fiber optic ring, which in turn is received at an output thereof. The fiber optic ring has a portion thereof, between the input and output, exposed to the sample gas or sample liquid. A processor is coupled to the receiver and determines the level of trace species in the gas or liquid sample based on the rate of decay of the radiation within the fiber optic ring.
    Type: Application
    Filed: December 12, 2001
    Publication date: June 12, 2003
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz
  • Publication number: 20030109055
    Abstract: An apparatus for detection and measurement of trace species in a gas or liquid sample. A sensor of a ring down cell formed from an optical fiber is exposed to the sample gas or liquid. A coherent source emits radiation into the optical fiber loop, which in turn is received at an output coupler. The fiber optic ring is coupled to a sensor which has a portion thereof, between the input and output, exposed to the sample gas or sample liquid. The sensor has an enhanced evanescent region. A processor is coupled to the receiver and determines the level of trace species in the gas or liquid sample based on the rate of decay of the radiation within the fiber optic ring.
    Type: Application
    Filed: May 29, 2002
    Publication date: June 12, 2003
    Inventors: Kevin K. Lehmann, Peter B. Tarsa, Paul Rabinowitz