Patents by Inventor Peter Bliss
Peter Bliss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9295794Abstract: The present invention describes systems and methods to provide variable flow oxygen therapy. An exemplary embodiment of the present invention provides a method of oxygen therapy involving delivering oxygen-enriched gas to a patient during a first portion of a breathing cycle at a first flow rate. Furthermore, the method of oxygen therapy involves delivering oxygen-enriched gas to the patient during a second portion of the breathing cycle at a second flow rate, where the second flow rate is greater than zero and less than the first flow rate.Type: GrantFiled: November 21, 2009Date of Patent: March 29, 2016Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Peter Bliss, Robert Murdoch, Robert Romano, Peter D. Hill
-
Patent number: 9114222Abstract: A respiratory therapy system that includes a gas delivery device enabled to deliver a quantity of oxygen-enriched gas and a quantity of insufflation gas is disclosed. The respiratory therapy system further provides a transtracheal catheter coupled to the gas delivery device. Additionally, the gas delivery device is enabled to deliver the quantity of insufflation gas during a first portion of a breathing cycle of a patient and to deliver the quantity of oxygen-enriched gas during a second portion of the breathing cycle.Type: GrantFiled: November 21, 2009Date of Patent: August 25, 2015Assignee: KONINKLIJKE PHILIPS N.V.Inventor: Peter Bliss
-
Patent number: 8402967Abstract: A gas blender with auxiliary mixed gas outlet for mixing a primary gas, generally air, and a secondary gas, generally oxygen, to obtain a mixed gas having several controlled characteristics. The gas blender may be incorporated into a Continuous Positive Airway Pressure (CPAP) device. The gas blender controls the mixing to produce the mixed gas having a predetermined mixture setpoint, generally an oxygen percentage, and a predetermined control setpoint, generally a pressure setpoint or flow rate setpoint. The gas blender provides an auxiliary mixed gas source for use by an auxiliary piece of equipment such as a nebulizer or resuscitation bag. The gas blender includes a primary gas inlet passageway, a secondary gas inlet passageway, a gas mixing apparatus, a mixed gas distribution passageway with an auxiliary mixed gas outlet, a gas sensor, a delivery sensor, a mixed gas delivery control valve, a mixed gas controlled passageway, and a controller.Type: GrantFiled: August 24, 2011Date of Patent: March 26, 2013Assignee: CareFusion 2200, Inc.Inventors: Michael S. Smith, Greg Voss, Peter Bliss, Scott Halperin
-
Publication number: 20110303219Abstract: A gas blender with auxiliary mixed gas outlet for mixing a primary gas, generally air, and a secondary gas, generally oxygen, to obtain a mixed gas having several controlled characteristics. The gas blender may be incorporated into a Continuous Positive Airway Pressure (CPAP) device. The gas blender controls the mixing to produce the mixed gas having a predetermined mixture setpoint, generally an oxygen percentage, and a predetermined control setpoint, generally a pressure setpoint or flow rate setpoint. The gas blender provides an auxiliary mixed gas source for use by an auxiliary piece of equipment such as a nebulizer or resuscitation bag. The gas blender includes a primary gas inlet passageway, a secondary gas inlet passageway, a gas mixing apparatus, a mixed gas distribution passageway with an auxiliary mixed gas outlet, a gas sensor, a delivery sensor, a mixed gas delivery control valve, a mixed gas controlled passageway, and a controller.Type: ApplicationFiled: August 24, 2011Publication date: December 15, 2011Applicant: CareFusion 2200, Inc.Inventors: Michael S. Smith, Greg Voss, Peter Bliss, Scott Halperin
-
Publication number: 20110232642Abstract: The present invention describes systems and methods to provide variable flow oxygen therapy. An exemplary embodiment of the present invention provides a method of oxygen therapy involving delivering oxygen-enriched gas to a patient during a first portion of a breathing cycle at a first flow rate. Furthermore, the method of oxygen therapy involves delivering oxygen-enriched gas to the patient during a second portion of the breathing cycle at a second flow rate, where the second flow rate is greater than zero and less than the first flow rate.Type: ApplicationFiled: November 21, 2009Publication date: September 29, 2011Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.Inventors: Peter Bliss, Robert Murdoch
-
Publication number: 20110232638Abstract: A respiratory therapy system that includes a gas delivery device enabled to deliver a quantity of oxygen-enriched gas and a quantity of insufflation gas is disclosed. The respiratory therapy system further provides a transtracheal catheter coupled to the gas delivery device. Additionally, the gas delivery device is enabled to deliver the quantity of insufflation gas during a first portion of a breathing cycle of a patient and to deliver the quantity of oxygen-enriched gas during a second portion of the breathing cycle.Type: ApplicationFiled: November 21, 2009Publication date: September 29, 2011Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.Inventor: Peter Bliss
-
Patent number: 8006692Abstract: A gas blender with auxiliary mixed gas outlet for mixing a primary gas, generally air, and a secondary gas, generally oxygen, to obtain a mixed gas having several controlled characteristics. The gas blender may be incorporated into a Continuous Positive Airway Pressure (CPAP) device. The gas blender controls the mixing to produce the mixed gas having a predetermined mixture setpoint, generally an oxygen percentage, and a predetermined control setpoint, generally a pressure setpoint or flow rate setpoint. The gas blender provides an auxiliary mixed gas source for use by an auxiliary piece of equipment such as a nebulizer or resuscitation bag. The gas blender includes a primary gas inlet passageway, a secondary gas inlet passageway, a gas mixing apparatus, a mixed gas distribution passageway with an auxiliary mixed gas outlet, a gas sensor, a delivery sensor, a mixed gas delivery control valve, a mixed gas controlled passageway, and a controller.Type: GrantFiled: December 2, 2005Date of Patent: August 30, 2011Assignee: CareFusion 2200, Inc.Inventors: Michael S. Smith, Greg Voss, Peter Bliss, Scott Halperin
-
Publication number: 20080053310Abstract: A compressor suitable for use in a portable oxygen concentrator. In one exemplary embodiment, the compressor includes a crankshaft rotatable about a central axis and a plurality of diaphragm assemblies spaced apart around the central axis generally within a plane. The diaphragm assemblies include diaphragms movably mounted to respective housings to at least partially define chambers. A plurality of rods extend between respective diaphragms and the crankshaft. The rods are coupled to the crankshaft such that the rods are offset axially from one another along the central axis and are coupled to the diaphragms for cyclically increasing and decreasing pressure within the chambers as the crankshaft rotates about the central axis.Type: ApplicationFiled: March 30, 2007Publication date: March 6, 2008Inventors: Peter Bliss, Charles Atlas, Scott Halperin
-
Publication number: 20070227360Abstract: A portable oxygen concentrator includes a pressure swing absorption system defined by a relatively rigid housing adapted to generate a flow of oxygen enriched gas and a battery adapted to provide power to the pressure swing absorption system. The oxygen concentrator has a total weight of less than about 10 lbs, has a maximum flow of 100% O2 equivalent gas of about 0.9 lpm, has a total volume less than about 800 in3, and gas a battery life of at least about 8 hours. The present invention also using a liquefaction or transfill system in combination with such an oxygen concentrator.Type: ApplicationFiled: March 30, 2007Publication date: October 4, 2007Inventors: Charles Atlas, Peter Bliss, Robert Murdoch, Scott Halperin
-
Publication number: 20070125374Abstract: A gas blender with auxiliary mixed gas outlet for mixing a primary gas, generally air, and a secondary gas, generally oxygen, to obtain a mixed gas having several controlled characteristics. The gas blender may be incorporated into a Continuous Positive Airway Pressure (CPAP) device. The gas blender controls the mixing to produce the mixed gas having a predetermined mixture setpoint, generally an oxygen percentage, and a predetermined control setpoint, generally a pressure setpoint or flow rate setpoint. The gas blender provides an auxiliary mixed gas source for use by an auxiliary piece of equipment such as a nebulizer or resuscitation bag. The gas blender includes a primary gas inlet passageway, a secondary gas inlet passageway, a gas mixing apparatus, a mixed gas distribution passageway with an auxiliary mixed gas outlet, a gas sensor, a delivery sensor, a mixed gas delivery control valve, a mixed gas controlled passageway, and a controller.Type: ApplicationFiled: December 2, 2005Publication date: June 7, 2007Inventors: Michael Smith, Greg Voss, Peter Bliss, Scott Halperin
-
Publication number: 20060230939Abstract: A portable oxygen concentrator includes a pair of sieve beds having first and second ends, a compressor for delivering air to the first ends of the sieve beds, a reservoir communicating with the second ends of the sieve beds, and an air manifold attached to the first ends of the sieve beds. The air manifold includes passages therein communicating with the compressor and the first ends of the sieve beds. A set of valves is coupled to the air manifold, and a controller is coupled to the valves for selectively opening and closing the valves to alternately charge and purge the sieve beds to deliver concentrated oxygen into the reservoir. An oxygen delivery manifold communicates with the second ends of the sieve beds for delivering oxygen from the reservoir to a user. Pressure sensors may be provided in the reservoir and/or delivery line for controlling operation of the controller.Type: ApplicationFiled: April 5, 2005Publication date: October 19, 2006Inventors: Peter Bliss, Charles Atlas, Scott Halperin
-
Publication number: 20060230929Abstract: A portable oxygen concentrator includes a pair of sieve beds having first and second ends, a compressor for delivering air to the first ends of the sieve beds, a reservoir communicating with the second ends of the sieve beds, and an air manifold attached to the first ends of the sieve beds. The air manifold includes passages therein communicating with the compressor and the first ends of the sieve beds. A set of valves is coupled to the air manifold, and a controller is coupled to the valves for selectively opening and closing the valves to alternately charge and purge the sieve beds to deliver concentrated oxygen into the reservoir. An oxygen delivery manifold communicates with the second ends of the sieve beds for delivering oxygen from the reservoir to a user. Pressure sensors may be provided in the reservoir and/or delivery line for controlling operation of the controller.Type: ApplicationFiled: April 5, 2005Publication date: October 19, 2006Inventors: Peter Bliss, Charles Atlas, Scott Halperin
-
Publication number: 20060230931Abstract: A portable oxygen concentrator includes a pair of sieve beds having first and second ends, a compressor for delivering air to the first ends of the sieve beds, a reservoir communicating with the second ends of the sieve beds, and an air manifold attached to the first ends of the sieve beds. The air manifold includes passages therein communicating with the compressor and the first ends of the sieve beds. A set of valves is coupled to the air manifold, and a controller is coupled to the valves for selectively opening and closing the valves to alternately charge and purge the sieve beds to deliver concentrated oxygen into the reservoir. An oxygen delivery manifold communicates with the second ends of the sieve beds for delivering oxygen from the reservoir to a user. Pressure sensors may be provided in the reservoir and/or delivery line for controlling operation of the controller.Type: ApplicationFiled: April 5, 2005Publication date: October 19, 2006Inventors: Peter Bliss, Charles Atlas, Scott Halperin