Patents by Inventor Peter C. Kong

Peter C. Kong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230166227
    Abstract: A hybrid plasma or ionic reactor includes the basic components of both a plasma jet reactor and a plasma arc reactor, which components operate simultaneously to provide hot ionic gas and electrical arcing within a reaction chamber in a manner that significantly increases processing of material within the reaction chamber. Additionally, an improved plasma or ionic reactor uses multiple sets of arc electrodes disposed around a reaction chamber in a unique offset manner that operates to create a larger area in the center of the reaction or plasma chamber where the arcs travel between an anode and a cathode of a pair of electrodes, thereby effectively increasing the size of the reaction zone in which the arcs are present.
    Type: Application
    Filed: December 1, 2022
    Publication date: June 1, 2023
    Inventors: Peter C. Kong, Rodney J. Bitsoi
  • Patent number: 10926238
    Abstract: An electrode assembly having a tubular support jacket that defines an internal compartment. The internal compartment is actively cooled by coolant. An electrode tip is coupled to the tubular support jacket. The electrode tip receives electricity through the tubular support jacket. An insulator construct surrounds at least part of the tubular support jacket. The insulator construct includes an insulation base, an insulation tube and an insulation cap. A gas supply conduit is interposed between the tubular support jacket and the insulation tube, wherein the gas supply conduit receives a working gas from a working gas supply. A thermally conductive casing surrounds at least part of the insulator construct. The thermally conductive casing is actively cooled. The thermally conductive casing actively cools the insulator construct, the underlying tubular support jacket, and thus the electrode tip. The active cooling reduces over-heating of the electrode tip and prevents excessive consumption and erosion.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: February 23, 2021
    Assignee: Cogent Energy Systems, Inc.
    Inventors: Peter C. Kong, Rodney J. Bitsoi
  • Publication number: 20190336935
    Abstract: An electrode assembly having a tubular support jacket that defines an internal compartment. The internal compartment is actively cooled by coolant. An electrode tip is coupled to the tubular support jacket. The electrode tip receives electricity through the tubular support jacket. An insulator construct surrounds at least part of the tubular support jacket. The insulator construct includes an insulation base, an insulation tube and an insulation cap. A gas supply conduit is interposed between the tubular support jacket and the insulation tube, wherein the gas supply conduit receives a working gas from a working gas supply. A thermally conductive casing surrounds at least part of the insulator construct. The thermally conductive casing is actively cooled. The thermally conductive casing actively cools the insulator construct, the underlying tubular support jacket, and thus the electrode tip. The active cooling reduces over-heating of the electrode tip and prevents excessive consumption and erosion.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Peter C. Kong, Rodney J. Bitsoi
  • Patent number: 9997322
    Abstract: Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: June 12, 2018
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Peter C. Kong, Jon D. Grandy, Brent A. Detering, Larry D. Zuck
  • Patent number: 8591821
    Abstract: Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 26, 2013
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Publication number: 20130300289
    Abstract: Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Peter C. Kong, Jon D. Grandy, Brent A. Detering, Larry D. Zuck
  • Patent number: 8536481
    Abstract: Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: September 17, 2013
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Peter C Kong, Jon D Grandy, Brent A Detering, Larry D Zuck
  • Patent number: 8287814
    Abstract: A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: October 16, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Publication number: 20110236272
    Abstract: A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.
    Type: Application
    Filed: February 8, 2008
    Publication date: September 29, 2011
    Inventor: Peter C. Kong
  • Patent number: 7939026
    Abstract: A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: May 10, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Peter C. Kong, J. Stephen Herring, Jon D. Grandy
  • Publication number: 20100270142
    Abstract: Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventor: Peter C. Kong
  • Patent number: 7741428
    Abstract: A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 22, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Patent number: 7741577
    Abstract: A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: June 22, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Peter C. Kong, Jon D. Grandy, Brent A. Detering
  • Patent number: 7494574
    Abstract: A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: February 24, 2009
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Peter C. Kong, Lee O. Nelson, Brent A. Detering
  • Patent number: 7470393
    Abstract: Methods of fabricating cermet materials and methods of utilizing the same such as in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The cermet material may be made from a transition metal aluminide phase and an alumina phase. The mixture may be pressed to form a green compact body and then heated in a nitrogen-containing atmosphere so as to melt aluminum particles and form the cermet. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The cermet material may also be formed so as to pass an electrical current therethrough to heat the material during use.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: December 30, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Patent number: 7468089
    Abstract: A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: December 23, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Publication number: 20080305026
    Abstract: A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.
    Type: Application
    Filed: August 21, 2008
    Publication date: December 11, 2008
    Inventor: Peter C. Kong
  • Patent number: 7420027
    Abstract: A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: September 2, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Patent number: 7413721
    Abstract: A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: August 19, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Peter C. Kong, Robert J. Pink, Larry D. Zuck
  • Patent number: 7354561
    Abstract: A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: April 8, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong