Patents by Inventor Peter C. Newman

Peter C. Newman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6795474
    Abstract: An excimer laser with a purged beam path capable of producing a high quality pulsed laser beam at pulse rates in excess of 2,000 Hz at pulse energies of about 5 mJ or greater. The entire purged beam path through the laser system is sealed to minimize contamination of the beam path. A preferred embodiment comprises a thermally decoupled LNP aperture element to minimize thermal distortions in the LNP. This preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter is provided with a special purge of a compartment exposed to the output laser beam.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: September 21, 2004
    Assignee: Cymer, Inc.
    Inventors: William N. Partlo, Richard L. Sandstrom, Holzer K. Glatzel, Raymond F. Cybulski, Peter C. Newman, James K. Howey, William G. Hulburd, John T. Melchior, Alex P. Ivaschenko
  • Patent number: 6757316
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: June 29, 2004
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Patent number: 6539046
    Abstract: An optical configuration to illuminate an etalon in a laser wavemeter with a minimum level of light intensity. The system includes optical components to direct a portion of the laser output beam representing the entire cross section of the beam, through an etalon positioned in an etalon housing and onto a photodetector. A first lens condenses the size of the beam sample, and a second lens re-collimates the beam which then passes into the etalon housing, ensuring that all of the spatial components of the beam are adequately sampled. A diffractive diffusing element is incorporated into the optical path. In a preferred embodiment, the diffractive diffusing element is placed within the etalon housing between said plano-concave lens and the etalon. In another preferred embodiment, the diffusing element is located up stream but outside the housing in the optical path.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: March 25, 2003
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, John T. Melchior, Richard L. Sandstrom
  • Patent number: 6504860
    Abstract: A laser component purge system for discharge lasers. The LNP, the output coupler and the wavemeter are contained in sealed chambers each having a purge inlet port and a purge outlet port. Purge gas such as N2 is directed to each of the inlet ports. A purge monitoring system is provided which monitors the purge flow and provides one or more signals to a processor which is programmed to minimize laser timeouts attributable to purge conditions without endangering the purged optical components. In a preferred embodiment, gas exiting the outlet ports are directed to flow monitors which provide the one or more signals to the processor. Purge gas may be exhausted or recirculated.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: January 7, 2003
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, John Van Doorn, Darrel W. Fullen, William H. Clopton, Shahryar Rokni
  • Publication number: 20020105994
    Abstract: An excimer laser with a purged beam path capable of producing a high quality pulsed laser beam at pulse rates in excess of 2,000 Hz at pulse energies of about 5 mJ or greater. The entire purged beam path through the laser system is sealed to minimize contamination of the beam path. A preferred embodiment comprises a thermally decoupled LNP aperture element to minimize thermal distortions in the LNP. This preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter is provided with a special purge of a compartment exposed to the output laser beam.
    Type: Application
    Filed: November 14, 2001
    Publication date: August 8, 2002
    Inventors: William N. Partlo, Richard L. Sandstrom, Holger K. Glatzel, Raymond F. Cybulski, Peter C. Newman, James K. Howey, William G. Hulburd, John T. Melchior, Alex P. Ivaschenko
  • Publication number: 20020101903
    Abstract: A laser component purge system for discharge lasers. The LNP, the output coupler and the wavemeter are contained in sealed chambers each having a purge inlet port and a purge outlet port. Purge gas such as N2 is directed to each of the inlet ports. A purge monitoring system is provided which monitors the purge flow and provides one or more signals to a processor which is programmed to minimize laser timeouts attributable to purge conditions without endangering the purged optical components. In a preferred embodiment, gas exiting the outlet ports are directed to flow monitors which provide the one or more signals to the processor. Purge gas may be exhausted or recirculated.
    Type: Application
    Filed: April 18, 2001
    Publication date: August 1, 2002
    Inventors: Peter C. Newman, John Van Doorn, Darrel W. Fullen, William H. Clopton, Shahryar Rokni
  • Patent number: 6396582
    Abstract: The present invention includes a system and method for characterizing the wavelength of a beam of radiation using a known reference transition. The invention comprises a vapor including a material having a transition which absorbs radiation of a known wavelength, the vapor being contained in a container. The container includes an optical path along which the beam of radiation can propagate through the vapor. A dispersive optical element is aligned along the optical path. A detector is aligned along the optical path after the dispersive element. Wavelength information about the beam of radiation is determined from the position of a dip in the detector signal that is correlated to the known reference transition. This method is most useful when the laser bandwidth substantially exceeds the transition bandwidth.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: May 28, 2002
    Assignee: Cymer, Inc.
    Inventors: Jesse D. Buck, Raymond F. Cybulski, Peter C. Newman, Palash P. Das
  • Publication number: 20020048294
    Abstract: An optical configuration to illuminate an etalon in a laser wavemeter with a minimum level of light intensity. The system includes optical components to direct a portion of the laser output beam representing the entire cross section of the beam, through an etalon positioned in an etalon housing and onto a photodetector. A first lens condenses the size of the beam sample, and a second lens re-collimates the beam which then passes into the etalon housing, ensuring that all of the spatial components of the beam are adequately sampled. A diffractive diffusing element is incorporated into the optical path. In a preferred embodiment, the diffractive diffusing element is placed within the etalon housing between said plano-concave lens and the etalon. In another preferred embodiment, the diffusing element is located up stream but outside the housing in the optical path.
    Type: Application
    Filed: December 27, 1999
    Publication date: April 25, 2002
    Inventors: PETER C. NEWMAN, JOHN T. MELCHIOR, RICHARD L. SANDSTROM
  • Publication number: 20020021728
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: May 11, 2001
    Publication date: February 21, 2002
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Patent number: 6330261
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses in the range of 1000 Hz to 2000 Hz with a full width half, maximum bandwidth of about 0.6 pm or less. Replaceable modules include a laser chamber, a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: December 11, 2001
    Assignee: Cymer, Inc.
    Inventors: Toshihiko Ishihara, Thomas P. Duffey, John T. Melchior, Herve A. Besaucele, Richard G. Morton, Richard M. Ness, Peter C. Newman, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom
  • Patent number: 6301284
    Abstract: A visible light alignment system mounted on a line narrowing module of a UV laser. The system includes an alignment platform on which a small visible light laser is mounted and beam directing optics to direct the visible light beam to reflect off an illumination surface of a first prism in a prism beam expander at an angle such that the visible light beam proceeds collinearly with the UV laser output beam.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: October 9, 2001
    Assignee: Cymer, Inc.
    Inventor: Peter C. Newman
  • Patent number: 6128323
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses at 2000 Hz with a full width half, maximum bandwidth of about 0.6 pm or less. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Improvements in the laser chamber permitting the higher pulse rates and improved bandwidth performance include a single upstream preionizer tube and a high efficiency chamber. The chamber is designed for operation at lower fluorine concentration. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: October 3, 2000
    Assignee: Cymer, Inc.
    Inventors: David W. Myers, Herve A. Besaucele, Palash P. Das, Thomas P. Duffey, Alexander I. Ershov, Igor V. Fomenkov, Thomas Hofmann, Richard G. Morton, Richard M. Ness, Peter C. Newman, Robert G. Ozarski, Gamaralalage G. Padmabandu, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom, Paul S. Thompson, Richard C. Ujazdowski, Tom A. Watson, R. Kyle Webb, Paolo Zambon
  • Patent number: 6018537
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses in the range of 1000 Hz to 2000 Hz or greater. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control. These improvements include an increased capacity high voltage power supply with a voltage bleed-down circuit for precise voltage trimming, an improved commutation module that generates a high voltage pulse from the capacitors charged by the high voltage power supply and amplifies the pulse voltage 23 times with a very fast voltage transformer having a secondary winding consisting of a single four-segment stainless steel rod.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: January 25, 2000
    Assignee: Cymer, Inc.
    Inventors: Thomas Hofmann, Jean-Marc Hueber, Palash P. Das, Toshihiko Ishihara, Thomas P. Duffey, John T. Melchior, Herve A. Besaucele, Richard G. Morton, Richard M. Ness, Peter C. Newman, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom
  • Patent number: 5978394
    Abstract: A wavelength system for measuring and controlling the wavelength of a narrowband laser. The system includes a wavemeter for measuring incremental changes in wavelength and an atomic wavelength reference for calibrating the wavemeter. The atomic wavelength reference includes a vapor cell for providing a vapor having at least one absorption line near a desired operating wavelength. The system includes a wavelength tuning device with a tuning range sufficient to tune the laser to operate at the wavelength of the absorption line in order to calibrate the wavemeter.In a preferred embodiment, the laser is an ArF laser, and the vapor is platinum and the absorption line is either 193,224.3 pm or 193,436.9. Improvements over prior art devices include an improved etalon having a support flange to provide a low stress three-point hanging support for the etalon without use of elastomers.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: November 2, 1999
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, Richard L. Sandstrom
  • Patent number: RE38054
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses in the range of 1000 Hz to 2000 Hz or greater. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control. These improvements include an increased capacity high voltage power supply with a voltage bleed-down circuit for precise voltage trimming, an improved communication module that generates a high voltage pulse from the capacitors charged by the high voltage power supply and amplifies the pulse voltage 23 times with a very fast voltage transformer having a secondary winding consisting of a single four-segment stainless steel rod.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 1, 2003
    Assignee: Cymer, Inc.
    Inventors: Thomas Hofmann, Jean-Marc Hueber, Palash P. Das, Toshihiko Ishihara, Thomas P. Duffey, John T. Melchior, Herve A. Besaucele, Richard G. Morton, Richard M. Ness, Peter C. Newman, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom
  • Patent number: RE41457
    Abstract: An optical configuration to illuminate an etalon in a laser wavemeter with a minimum level of light intensity. The system includes optical components to direct a portion of the laser output beam representing the entire cross section of the beam, through an etalon positioned in an etalon housing and onto a photodetector. A first lens condenses the size of the beam sample, and a second lens re-collimates the beam which then passes into the etalon housing, ensuring that all of the spatial components of the beam are adequately sampled. A diffractive diffusing element is incorporated into the optical path. In a preferred embodiment, the diffractive diffusing element is placed within the etalon housing between said plano-concave lens and the etalon. In another preferred embodiment, the diffusing element is located up stream but outside the housing in the optical path.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: July 27, 2010
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, John T. Melchior, Richard L. Sandstrom