Patents by Inventor Peter C. Sercel

Peter C. Sercel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6865317
    Abstract: A resonant optical filter includes first and second transmission waveguides and a resonator (including one or more evanescently coupled resonator segments). The resonator supports at least one circumferential resonant mode and is evanescently coupled to the waveguides. An optical signal entering the filter through a waveguide and substantially resonant with the resonator is transferred to the other waveguide, while an optical signal entering the filter and substantially non-resonant with the resonator remains in the same waveguide. Multiple resonator segments may be formed on a common resonator fiber and positioned for enabling coupling between them, resulting in a tailored frequency filter function. The resonators may include alignment structure(s) (flanges, grooves, etc) for enabling passive positioning and/or supporting first and second transmission waveguides, such as optical fiber tapers.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: March 8, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Kerry J. Vahala, Peter C. Sercel, David W. Vernooy, Oskar J. Painter, Guido Hunziker
  • Publication number: 20040197051
    Abstract: A method for cylindrical processing of an optical medium, including optical fiber and optical materials of substantially cylindrical form. The method of the preferred embodiments includes the steps of rotating an optical medium about a longitudinal relative rotation axis thereof relative to a processing tool; spatially selectively applying the processing tool to a portion of a surface of the optical medium in operative cooperation with relative rotation of the optical medium and the processing tool, thereby producing a patterned (i.e., spatially selective) structural alteration of the optical medium, the pattern including altered, differentially-altered and unaltered portions of the optical medium.
    Type: Application
    Filed: February 16, 2001
    Publication date: October 7, 2004
    Inventors: Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker
  • Patent number: 6741628
    Abstract: The present invention is a micro-cavity laser and methods related thereto. In the preferred embodiments, the micro-cavity laser comprises a laser pump signal in a fiber waveguide which is optically coupled to a micro-cavity resonator through a fiber taper. The micro-resonator includes a gain medium necessary for lasing action. The lasing frequency can be determined based upon the gain medium, the micro-cavity structure, as well as frequency selective elements such as gratings incorporated into the micro-cavity. The tapered fiber waveguide permits the micro-cavity laser to operate without a break in the fiber waveguide. In the preferred embodiments, the micro-cavity resonator is constructed from a doped silica or a semiconductor material. The present invention provides a compact laser with improved emissions and coupling efficiencies. Alternative configurations include multiple micro-cavities on a single fiber waveguide and/or utilizing multiple waveguides attached to one or more micro-cavity resonators.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: May 25, 2004
    Assignees: California Institute of Technology, cQuint Communications Corporation
    Inventors: Oskar Painter, Ming Cai, Kerry J. Vahala, Peter C. Sercel
  • Publication number: 20030081903
    Abstract: An optical signal may be received into orthogonal linearly polarized modes of a transmission optical waveguide, the transmission waveguide including first and second transverse-coupling segments thereof. Optical signal polarized along one polarization direction may be substantially completely transferred from the transmission waveguide into a first transverse-coupled waveguide, the first transverse-coupled waveguide being optically transverse-coupled to the first transverse-coupling segment of the transmission waveguide. Optical signal polarized along the other polarization direction may be substantially completely transferred from the transmission waveguide into a second transverse-coupled waveguide, the second transverse-coupled waveguide being optically transverse-coupled to the second transverse-coupling segment of the transmission waveguide. The optical signals carried by the first and second transverse-coupled waveguides may be combined into a single waveguide.
    Type: Application
    Filed: October 30, 2002
    Publication date: May 1, 2003
    Inventors: Kerry J. Vahala, Peter C. Sercel, Oskar J. Painter, David W. Vernooy, David S. Alavi
  • Publication number: 20020081055
    Abstract: A resonant optical modulator comprises a transmission fiber-optic waveguide, a circumferential-mode optical resonator transverse-coupled thereto, a modulator optical component transverse-coupled to the circumferential-mode resonator, and a modulator control component. A control signal applied to the modulator optical component through the modulator control component alters the round-trip optical loss of the circumferential-mode resonator, thereby altering the transmission of a resonant optical signal through the transmission fiber-optic waveguide. The modulator optical element may comprise an open waveguide or a closed waveguide (i.e., resonator). The resonator round-trip optical loss may be altered by altering the optical absorption/scattering of the modulator optical component, by altering the amount of optical power transfer between the resonator and the modulator optical component, or by altering an optical resonance frequency of a resonant modulator optical component.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 27, 2002
    Inventors: Oskar J. Painter, Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker
  • Publication number: 20020044739
    Abstract: A resonant optical filter including a first and second transmission optical waveguides, and a resonator, which resonator may include one or more resonator segements evanescently optically coupled therebetween. The resonator supports a circumferential resonant optical mode and is evanescently coupled to each of the first and second transmission optical waveguides.
    Type: Application
    Filed: February 16, 2001
    Publication date: April 18, 2002
    Inventors: Kerry J. Vahala, Peter C. Sercel, David W. Vernooy, Oskar J. Painter, Guido Hunziker
  • Publication number: 20020041730
    Abstract: A method for fabricating an optical resonator on an optical fiber including the steps of generating a differential of a physical property (e.g., diameter, density, refractive index, chemical composition, and so forth) of a transverse segment of the resonator fiber. The resonator fiber segment may substantially confine a circumferential optical mode propagating around the resonator fiber segment circumference at least partially within the resonator fiber segment, thereby enabling substantial confinement of a substantially resonant circumferential optical mode near a surface of the fiber, and enabling evanescent optical coupling between circumferential optical mode and an optical mode supported by a second optical element. Specialized techniques for spatially selectively generating the differential may include masking/etching, masking/deposition, laser machining, laser patterning, combinations thereof, and/or functional equivalents thereof.
    Type: Application
    Filed: February 16, 2001
    Publication date: April 11, 2002
    Inventors: Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker, Robert B. Lee
  • Publication number: 20020037132
    Abstract: The present invention applies to resonant optical power control device assemblies and methods relating thereto, and includes an alignment device preferably including one or more waveguide-alignment grooves, resonator alignment grooves, and alignment groves for a second optical element including a modulator. One embodiment includes a transmission optical waveguide, a circumferential-mode optical resonator; and a second optical element, optionally including one or more of an optical modulator or a second transmission optical waveguide, and optionally including a modulator optical control element. In this embodiment, the alignment grooves reliably establish and stably maintain evanescent optical coupling between the optical elements positioned in such grooves. A method for assembling a resonant optical power control devices is also disclosed.
    Type: Application
    Filed: February 16, 2001
    Publication date: March 28, 2002
    Inventors: Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker, Robert B. Lee, Oskar J. Painter
  • Publication number: 20010033587
    Abstract: The present invention is a micro-cavity laser and methods related thereto. In the preferred embodiments, the micro-cavity laser comprises a laser pump signal in a fiber waveguide which is optically coupled to a micro-cavity resonator through a fiber taper. The micro-resonator includes a gain medium necessary for lasing action. The lasing frequency can be determined based upon the gain medium, the micro-cavity structure, as well as frequency selective elements such as gratings incorporated into the micro-cavity. The tapered fiber waveguide permits the micro-cavity laser to operate without a break in the fiber waveguide. In the preferred embodiments, the micro-cavity resonator is constructed from a doped silica or a semiconductor material. The present invention provides a compact laser with improved emissions and coupling efficiencies. Alternative configurations include multiple micro-cavities on a single fiber waveguide and/or utilizing multiple waveguides attached to one or more micro-cavity resonators.
    Type: Application
    Filed: March 9, 2001
    Publication date: October 25, 2001
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Oskar Painter, Ming Cai, Kerry J. Vahala, Peter C. Sercel