Patents by Inventor Peter C. Simpson

Peter C. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10918313
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: February 16, 2021
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Steve Masterson, John Nolting, James R. Petisce, Jack Pryor, Sean Saint, Peter C. Simpson, Vance Swanson, Matthew D. Wightlin
  • Publication number: 20210038128
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20210038129
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Patent number: 10905377
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: February 2, 2021
    Assignee: DexCom, Inc.
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Patent number: 10908114
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: February 2, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Bohm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Publication number: 20210022653
    Abstract: Biointerface membranes are provided which can be utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device incorporating such membranes are provided.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 28, 2021
    Inventors: James H. Brauker, Robert J. Boock, Monica A. Rixman, Peter C. Simpson, Mark C. Brister, Mark C. Shults
  • Patent number: 10898115
    Abstract: Systems for applying a transcutaneous monitor to a person can include a telescoping assembly, a sensor, and a base with adhesive to couple the sensor to skin. The sensor can be located within the telescoping assembly while the base protrudes from a distal end of the system. The system can be configured to couple the sensor to the base by compressing the telescoping assembly.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: January 26, 2021
    Assignee: DexCom, Inc.
    Inventors: Jason Halac, John Michael Gray, Neal Davis Johnston, Justen Deering England, Peter C. Simpson, Paul V. Neale, Jennifer Blackwell, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Mark Douglas Kempkey
  • Publication number: 20210007644
    Abstract: Methods and apparatus are provided for communication among display devices and sensor electronics unit in an analyte monitoring system. The analyte monitoring system may include a sensor that is configured to perform measurements indicative of analyte levels. The sensor may be communicatively coupled to the sensor electronics unit. The sensor electronics unit may be configured to transmit data indicative of analyte levels to the display devices using one or more communication protocols. Furthermore, the sensor electronics unit may be configured to operate in multiple modes, and switch between the modes in response to commands received from the display devices. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 14, 2021
    Inventors: Jeffrey R. Wedekind, Douglas William Burnette, Aditya Mandapaka, Zebediah L. McDaniel, Peter C. Simpson, Arturo Garcia
  • Publication number: 20210000394
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10881339
    Abstract: Devices, systems, and methods for providing more accurate and reliable sensor data and for detecting sensor failures. Two or more electrodes can be used to generate data, and the data can be subsequently compared by a processing module. Alternatively, one sensor can be used, and the data processed by two parallel algorithms to provide redundancy. Sensor performance, including sensor failures, can be identified. The user or system can then respond appropriately to the information related to sensor performance or failure.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 5, 2021
    Assignee: DexCom, Inc.
    Inventors: Thomas A. Peyser, Naresh C. Bhavaraju, Leif N. Bowman, Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Peter C. Simpson
  • Patent number: 10881335
    Abstract: Methods and apparatus are provided for communication among display devices and sensor electronics unit in an analyte monitoring system. The analyte monitoring system may include a sensor that is configured to perform measurements indicative of analyte levels. The sensor may be communicatively coupled to the sensor electronics unit. The sensor electronics unit may be configured to transmit data indicative of analyte levels to the display devices using one or more communication protocols. Furthermore, the sensor electronics unit may be configured to operate in multiple modes, and switch between the modes in response to commands received from the display devices. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: January 5, 2021
    Assignee: DexCom, Inc.
    Inventors: Jeffrey R. Wedekind, Douglas William Burnette, Aditya Mandapaka, Zebediah L. McDaniel, Peter C. Simpson, Arturo Garcia
  • Publication number: 20200397291
    Abstract: Systems and methods of use involving sensors having a signal-to-noise ratio that is substantially unaffected by non-constant noise are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 24, 2020
    Inventors: Peter C. Simpson, Robert J. Boock, Mark C. Brister, Monica A. Rixman, Kum Ming Woo, Lisa Nguyen, Seth R. Brunner, Arthur Chee, Melissa A. Nicholas, Matthew D. Wightlin, Jack Pryor, Dubravka Markovic
  • Publication number: 20200397354
    Abstract: Methods and apparatus are provided for communication among display devices and sensor electronics unit in an analyte monitoring system. The analyte monitoring system may include a sensor that is configured to perform measurements indicative of analyte levels. The sensor may be communicatively coupled to the sensor electronics unit. The sensor electronics unit may be configured to transmit data indicative of analyte levels to the display devices using one or more communication protocols. Furthermore, the sensor electronics unit may be configured to operate in multiple modes, and switch between the modes in response to commands received from the display devices. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Jeffrey R. Wedekind, Douglas William Burnette, Aditya Mandapaka, Zebediah L. McDaniel, Peter C. Simpson, Arturo Garcia
  • Patent number: 10863944
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: December 15, 2020
    Assignee: DexCom, Inc.
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Publication number: 20200367794
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: July 8, 2020
    Publication date: November 26, 2020
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, Jr., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin
  • Publication number: 20200359949
    Abstract: The present invention relates generally to biointerface membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the invention relates to novel biointerface membranes, to devices and implantable devices including these membranes, methods for forming the biointerface membranes on or around the implantable devices, and to methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device.
    Type: Application
    Filed: July 14, 2020
    Publication date: November 19, 2020
    Inventors: James H. Brauker, Peter C. Simpson, Robert J. Boock, Monica Rixman Swinney, Mark C. Brister
  • Patent number: 10835162
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10835161
    Abstract: A transcutaneous sensor device configured for continuously measuring analyte concentrations in a host is provided. In some embodiments, the transcutaneous sensor device 100 comprises an in vivo portion 160 configured for insertion under the skin 180 of the host and an ex vivo portion 170 configured to remain above the surface of the skin 180 of the host after sensor insertion of the in vivo portion. The in vivo portion may comprise a tissue piercing element 110 configured for piercing the skin 180 of the host and a sensor body 120 comprising a material or support member 130 that provides sufficient column strength to allow the sensor body to be pushable in a host tissue without substantial buckling. The ex vivo portion 170 may be configured to comprise (or operably connect to) a sensor electronics unit and may comprise a mounting unit 150. Also described here are various configurations of the sensor body and the tissue piercing element that may be used to protect the membrane of the sensor body.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Sebastian Böhm, James H. Brauker, Paul V. Neale
  • Patent number: 10827956
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Peter C. Simpson, Matthew D. Wightlin, Steve Masterson, James R. Petisce, John Nolting, Jack Pryor, Sean Saint, Vance Swanson, James H. Brauker, Apurv Ullas Kamath, Paul V. Goode, Jr., Aarthi Mahalingam
  • Patent number: 10827955
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint