Patents by Inventor Peter C. Simpson

Peter C. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150351670
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 10, 2015
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Publication number: 20150289788
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 9155843
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: October 13, 2015
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 9149220
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 6, 2015
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Patent number: 9131885
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 15, 2015
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20150253334
    Abstract: This disclosure provides systems, methods and apparatus for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor. The system may include a display device with at least one input device. In response to movement of or along the input device, the display device may change a glucose data output parameter and update an output of the display device using the changed output parameter.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: Eric Johnson, Michael Robert Mensinger, Peter C. Simpson, Thomas Hall, Hari Hampapuram, Kostyantyn Snisarenko, Eli Reihman, Holly Chico, Kassandra Constantine
  • Publication number: 20150164391
    Abstract: Systems and methods for analyte monitoring, particularly systems and methods for monitoring and managing life of a battery in an analyte sensor system worn by a user, are provided.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 18, 2015
    Inventors: Jose Hector Hernandez-Rosas, Mark Dervaes, Peter C. Simpson, Apurv Ullas Kamath, Tom Miller, Shawn Larvenz, Stephen J. Vanslyke
  • Patent number: 9050413
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 9, 2015
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 9044199
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: June 2, 2015
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Peter C. Simpson, Vance Swanson, Apurv Ullas Kamath, Sean Saint, James R. Petisce, Kum Ming Woo
  • Publication number: 20150148638
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: January 6, 2015
    Publication date: May 28, 2015
    Inventors: Peter C. Simpson, Mark C. Brister, Matthew D. Wightlin
  • Patent number: 9041730
    Abstract: This disclosure provides systems, methods and apparatus for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor. The system may include a display device with at least one input device. In response to movement of or along the input device, the display device may change a glucose data output parameter and update an output of the display device using the changed output parameter.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: May 26, 2015
    Assignee: DexCom, Inc.
    Inventors: Eric Johnson, Michael Robert Mensinger, Peter C. Simpson, Thomas Hall, Hari Hampapuram, Kostyantyn Snisarenko, Eli Reihman, Holly Chico, Kassandra Constantine
  • Patent number: 9037210
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 19, 2015
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Mark Brister, Jacob S. Leach
  • Publication number: 20150118668
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Grubstein, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Publication number: 20150120317
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Grubstein, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Publication number: 20150119668
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Grubstein, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Publication number: 20150118658
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Grubstein, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Publication number: 20150119655
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Grubstein, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Publication number: 20150090589
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Bohm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Publication number: 20150057514
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Publication number: 20150025346
    Abstract: Systems and methods of use involving sensors having a particle-containing domain are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 22, 2015
    Inventors: Peter C. Simpson, Robert J. Boock, Matthew D. Wightlin