Patents by Inventor Peter C. Simpson

Peter C. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7917186
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 29, 2011
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, Jr.
  • Patent number: 7896809
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 1, 2011
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv Ullas Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Publication number: 20110046467
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 24, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Publication number: 20110028815
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20110028816
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20110027127
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20110024307
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Apurv Ullas Kamath, Matthew Wightlin, Michael J. Estes
  • Publication number: 20100331644
    Abstract: An apparatus houses an intravascular sensor and is configured to measure the analyte in a biological sample of a host. The apparatus includes a fluid coupler having a first end configured to mate with a connecting end of a catheter and a second end configured to mate with a tubing assembly including, for example, an infusion pump, and a housing connected to the fluid coupler. The housing is configured to receive a sensor disposed within the fluid coupler such that when the fluid coupler is mated to the catheter, the sensor can be exposed to a biological sample. The housing is also configured to electrically couple the sensor with an external device, such as a processor for receiving and analyzing the sensor output. The housing and the fluid coupler are connected such that a fluidic seal is formed thereby preventing fluid in the fluid coupler from entering the housing.
    Type: Application
    Filed: July 1, 2010
    Publication date: December 30, 2010
    Applicant: DexCom, Inc.
    Inventors: Paul V. Neale, Jake S. Leach, Peter C. Simpson, Jennifer Blackwell
  • Publication number: 20100331655
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: September 1, 2010
    Publication date: December 30, 2010
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, JR.
  • Publication number: 20100331648
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: September 1, 2010
    Publication date: December 30, 2010
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, JR.
  • Publication number: 20100286496
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 11, 2010
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Patent number: 7828728
    Abstract: The present invention relates generally to membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the invention relates to novel silicone-hydrophilic polymer blend membranes, and to devices and implantable devices including these membranes.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: November 9, 2010
    Assignee: DexCom, Inc.
    Inventors: Robert Boock, Monica Rixman, James H. Brauker, James R. Petisce, Peter C. Simpson, Mark Brister, Mark A. Tapsak, Victoria Carr-Brendel
  • Publication number: 20100212583
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: May 6, 2010
    Publication date: August 26, 2010
    Applicant: DexCom, Inc.
    Inventors: Mark Brister, James R. Petisce, Sean Saint, Kum Ming Woo, Victor Ha, John Nolting, Peter C. Simpson, James Brouker
  • Publication number: 20100198036
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, JR., Mark Brister, Paul V. Neale, Sean Saint
  • Publication number: 20100198035
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, JR., Mark Brister, Paul V. Neale, Sean Saint
  • Patent number: 7762989
    Abstract: A system and method for automatically delivering an infusate to a patient is disclosed. The system includes an infusion set and an infusion device. A signaling component disposed on an infusion set component identifies the infusion set and is encrypted for security. The encryption may include both an encryption algorithm and a valid number algorithm. A detection device operatively connected to the infusion device decrypts and detects the signaling component and identifies the infusion set. The infusion device is then configured to operate according to an administration protocol suitable for the infusion set and an infusion device, such as an infusion pump.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: July 27, 2010
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventor: Peter C. Simpson
  • Publication number: 20100185071
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 22, 2010
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Patent number: 7761130
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: July 20, 2010
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathbun K. Rhodes, Mark A. Tapsak
  • Publication number: 20100179401
    Abstract: A system is provided for monitoring glucose in a host, including a continuous glucose sensor that produces a data stream indicative of a host's glucose concentration and an integrated receiver that receives the data stream from the continuous glucose sensor and calibrates the data stream using a single point glucose monitor that is integral with the integrated receiver. The integrated receiver obtains a glucose value from the single point glucose monitor, calibrates the sensor data stream received from the continuous glucose sensor, and displays one or both of the single point glucose measurement values and the calibrated continuous glucose sensor values on the user interface.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 15, 2010
    Applicant: DexCom, Inc.
    Inventors: Andrew Rasdal, James H. Brauker, Paul V. Neale, Peter C. Simpson
  • Publication number: 20100145172
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Application
    Filed: January 15, 2010
    Publication date: June 10, 2010
    Applicant: DexCom, Inc.
    Inventors: James Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker