Patents by Inventor Peter Craven

Peter Craven has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7756592
    Abstract: A method and system for controlling the behavior of a plant having an input and an output by enhanced feedback. A simulation input signal is derived from an input to be applied to the plant and a simulated signal is generated by simulating an aspect of an assumed behavior of the plant in dependence on the simulation input signal. The simulated signal is subtracted from a plant feedback signal which is derived from an output of the plant and the resulting difference signal is used to modify the input signal by feedback prior to deriving a plant input signal. The simulation may take into account derivation of the plant feedback signal and the input signal is typically modified so as to reduce the effect on the output signal of a deviation in actual behavior of the plant from the assumed behavior of the plant over a predetermined operating frequency range.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: July 13, 2010
    Inventor: Peter Craven
  • Publication number: 20090302938
    Abstract: A low delay corrector (LDC) unit includes a non-linear function generator and a filter. The nonlinear function generator receives a first signal and outputs a second signal in dependence on the first signal and a transfer function of the nonlinear function generator. The filter is fed in dependence on the second signal output by the nonlinear function generator. The first signal received by the nonlinear function generator is derived in dependence on an input signal provided to an input of the LDC unit and an output of the filter. An output of the LDC unit is derived in dependence on the first signal received by the nonlinear function generator and the second signal output by the nonlinear function generator.
    Type: Application
    Filed: August 17, 2009
    Publication date: December 10, 2009
    Applicant: D2AUDIO CORPORATION
    Inventors: Jack B. Andersen, Peter Craven, Michael A. Kost, Daniel L.W. Chieng, Larry E. Hand, Wilson E. Taylor
  • Patent number: 7576606
    Abstract: Systems and methods for performance improvements in digital switching amplifiers using a low delay corrector. In one embodiment, a digital pulse width modulation (PWM) amplifier includes a signal processing plant configured to receive and process an input audio signal. The amplifier also includes a low delay corrector configured to receive signals output by the plant. The output of the low delay corrector is added to the input audio signal as feedback. The plant may consist of a modulator and power switch, a noise shaper, or any other type of plant. An analog-to-digital converter (ADC) may be provided to convert the output audio signal to a digital signal. Filtering may be implemented before or after the ADC, and a decimator may be placed after the ADC if it is an oversampling ADC.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: August 18, 2009
    Assignee: D2Audio Corporation
    Inventors: Jack B. Andersen, Peter Craven, Michael A. Kost, Daniel L. W. Chieng, Larry E. Hand, Wilson E. Taylor
  • Publication number: 20090027117
    Abstract: Systems and methods for performance improvements in digital switching amplifiers using low-pass filtering to reduce noise and distortion. In one embodiment, a digital pulse width modulation (PWM) amplifier includes a signal processing plant configured to receive and process an input audio signal. The amplifier also includes a low-pass filter configured to filter audio signals output by the plant. The filtered output of the plant is added to the input audio signal as feedback. The plant may consist of a modulator and power switch, a noise shaper, or any other type of plant. An analog-to-digital converter (ADC) may be provided to convert the output audio signal to a digital signal. Filtering may be implemented before or after the ADC, and a decimator may be placed after the ADC if it is an oversampling ADC.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventors: Jack B. Andersen, Peter Craven, Michael A. Kost, Daniel L.W. Chieng, Larry E. Hand, Wilson E. Taylor
  • Publication number: 20090027118
    Abstract: Systems and methods for performance improvements in digital switching amplifiers using a low delay corrector. In one embodiment, a digital pulse width modulation (PWM) amplifier includes a signal processing plant configured to receive and process an input audio signal. The amplifier also includes a low delay corrector configured to receive signals output by the plant. The output of the low delay corrector is added to the input audio signal as feedback. The plant may consist of a modulator and power switch, a noise shaper, or any other type of plant. An analog-to-digital converter (ADC) may be provided to convert the output audio signal to a digital signal. Filtering may be implemented before or after the ADC, and a decimator may be placed after the ADC if it is an oversampling ADC.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventors: Jack B. Andersen, Peter Craven, Michael A. Kost, Daniel L.W. Chieng, Larry E. Hand, Wilson E. Taylor
  • Patent number: 7286009
    Abstract: Systems and methods for performance improvements in digital switching amplifiers using simulation-based feedback. In one embodiment, a digital pulse width modulation (PWM) amplifier includes a signal processing plant configured to receive and process an input audio signal. The amplifier also includes a simulator configured to model processing of audio signals by the plant. The outputs of the plant and the simulator are provided to a subtractor, the output of which is then added to the input audio signal as feedback. The plant may consist of a modulator and power switch, a noise shaper, or any other type of plant. An analog-to-digital converter (ADC) may be provided to convert the output audio signal to a digital signal for input to the subtractor. Filtering may be implemented before or after the ADC, and a decimator may be placed after the ADC if it is an oversampling ADC.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: October 23, 2007
    Assignee: D2Audio Corporation
    Inventors: Jack B. Andersen, Peter Craven, Michael A. Kost, Daniel L. W. Chieng, Larry E. Hand, Wilson E. Taylor
  • Publication number: 20070156262
    Abstract: A method and system for controlling the behaviour of a plant having an input and an output by enhanced feedback. A simulation input signal is derived from an input to be applied to the plant and a simulated signal is generated by simulating an aspect of an assumed behaviour of the plant in dependence on the simulation input signal. The simulated signal is subtracted from a plant feedback signal which is derived from an output of the plant and the resulting difference signal is used to modify the input signal by feedback prior to deriving a plant input signal. The simulation may take into account derivation of the plant feedback signal and the input signal is typically modified so as to reduce the effect on the output signal of a deviation in actual behaviour of the plant from the assumed behaviour of the plant over a predetermined operating frequency range.
    Type: Application
    Filed: December 30, 2005
    Publication date: July 5, 2007
    Inventor: Peter Craven
  • Publication number: 20070152750
    Abstract: Systems and methods for performance improvements in digital switching amplifiers using simulation-based feedback. In one embodiment, a digital pulse width modulation (PWM) amplifier includes a signal processing plant configured to receive and process an input audio signal. The amplifier also includes a simulator configured to model processing of audio signals by the plant. The outputs of the plant and the simulator are provided to a subtractor, the output of which is then added to the input audio signal as feedback. The plant may consist of a modulator and power switch, a noise shaper, or any other type of plant. An analog-to-digital converter (ADC) may be provided to convert the output audio signal to a digital signal for input to the subtractor. Filtering may be implemented before or after the ADC, and a decimator may be placed after the ADC if it is an oversampling ADC.
    Type: Application
    Filed: December 30, 2005
    Publication date: July 5, 2007
    Inventors: Jack Andersen, Peter Craven, Michael Kost, Daniel Chieng, Larry Hand, Wilson Taylor
  • Publication number: 20050030207
    Abstract: In a method of lossless processing of an integer value signal in a prediction filter which includes a quantiser, a numerator of the prediction filter is implemented prior to the quantiser and a denominator of the prediction filter is implemented recursively around the quantiser to reduce the peak data rate of an output signal. In the lossless processor, at each sample instant, an input to the quantiser is jointly responsive to a first sample value of a signal input to the prediction filter, a second sample value of a signal input to the prediction filter at a previous sample instant, and an output value of the quantiser at a previous sample incident. In a preferred embodiment, the prediction filter includes noise shaping for affecting the output of the quantiser.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 10, 2005
    Inventors: Peter Craven, Michael Gerzon, Peter Gerzon
  • Publication number: 20050007262
    Abstract: A lossless encoder and decoder are provided for transmitting a multichannel signal on a medium such as DVD-Audio. The encoder accepts additionally a downmix specification and splits the encoded stream into two substreams, such that a two-channel decoder of meagre computational power can implement the downmix specification by decoding one substream, while a multichannel decoder can decode the original multichannel signal losslessly using both substreams. Further features provide for efficient implementation on 24-bit processors, for confirmation of lossless reproduction to the user, and for benign behaviour in the case of downmix specifications that result in overload.
    Type: Application
    Filed: August 5, 2004
    Publication date: January 13, 2005
    Inventors: Peter Craven, Malcolm Law, John Stuart
  • Patent number: 4118790
    Abstract: Data processing equipment suitable for recording details of manually connected telephone calls has a plurality of operator stations with keyboards and VDU's connected in groups to operator's control units which respond to keyed instructions to obtain data from peripheral units storing such data and for recording on magnetic tape cartridge the details of the calls. The magnetic tape cartridge recording units are duplicated and the data to be recorded in the two units, which are separately generated and should be the same, are compared with one another and their validity checked. If both data are valid, whether they differ or not, they are recorded. If only one set of data is valid only the valid data are recorded by both recorders. A marker signal may be recorded to indicate that the data recorded may be incorrect.
    Type: Grant
    Filed: March 1, 1977
    Date of Patent: October 3, 1978
    Assignee: Post Office
    Inventors: Stewart Graham Cockett, Jeffrey Philip Taylor, Peter Craven, Alan Charles Farmer