Patents by Inventor Peter Danny Van Voorst

Peter Danny Van Voorst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11815402
    Abstract: Disclosed is a wavefront sensor for measuring a tilt of a wavefront at an array of locations across a beam of radiation, wherein said wavefront sensor comprises a film, for example of Zirconium, having an indent array comprising an indent at each of said array of locations, such that each indent of the indent array is operable to perform focusing of said radiation. Also disclosed is a radiation source and inspection apparatus comprising such a wavefront sensor.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 14, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Sietse Thijmen Van Der Post, Peter Danny Van Voorst
  • Publication number: 20220099498
    Abstract: Disclosed is a wavefront sensor for measuring a tilt of a wavefront at an array of locations across a beam of radiation, wherein said wavefront sensor comprises a film, for example of Zirconium, having an indent array comprising an indent at each of said array of locations, such that each indent of the indent array is operable to perform focusing of said radiation. Also disclosed is a radiation source and inspection apparatus comprising such a wavefront sensor.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 31, 2022
    Applicant: ASML Netherlands B.V.
    Inventors: Sietse Thijmen VAN DER POST, Peter Danny VAN VOORST
  • Patent number: 11243470
    Abstract: An optical system delivers illuminating radiation and collects radiation after interaction with a target structure on a substrate. A measurement intensity profile is used to calculate a measurement of the property of the structure. The optical system may include a solid immersion lens. In a method, the optical system is controlled to obtain a first intensity profile using a first illumination profile and a second intensity profile using a second illumination profile. The profiles are used to derive a correction for mitigating the effect of, e.g., ghost reflections. Using, e.g., half-moon illumination profiles in different orientations, the method can measure ghost reflections even where a solid immersion lens would cause total internal reflection. The optical system may include a contaminant detection system to control a movement based on received scattered detection radiation. The optical system may include an optical component having a dielectric coating to enhance evanescent wave interaction.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: February 8, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Nitish Kumar, Adrianus Johannes Hendrikus Schellekens, Sietse Thijmen Van Der Post, Ferry Zijp, Willem Maria Julia Marcel Coene, Peter Danny Van Voorst, Duygu Akbulut, Sarathi Roy
  • Patent number: 11129266
    Abstract: There is described an optical system (400) for focusing a beam of radiation (B) on a region of interest of a substrate in a metrology apparatus. The beam of radiation comprises radiation in a soft X-ray or Extreme Ultraviolet spectral range. The optical system comprises a first reflector system (410) and a second reflector system (412). Each of the first and second reflector systems (410, 412) comprises a finite-to-finite Wolter reflector system. The optical system (400) is configured to form, on the region of interest, a demagnified image (414) of an object (416) comprising an apparent source of the beam of radiation (B).
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: September 21, 2021
    Assignee: ASML Netherlands B.V.
    Inventor: Peter Danny Van Voorst
  • Patent number: 10725381
    Abstract: An optical system (OS) for focusing a beam of radiation (B) on a region of interest in a metrology apparatus is described. The beam of radiation (B) comprises radiation in a soft X-ray or Extreme Ultraviolet spectral range. The optical system (OS) comprises a first stage (S1) for focusing the beam of radiation at an intermediate focus region. The optical system (OS) comprises a second stage (S2) for focusing the beam of radiation from the intermediate focus region onto the region of interest. The first and second stages each comprise a Kirkpatrick-Baez reflector combination. At least one reflector comprises an aberration-correcting reflector.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 28, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Sietse Thijmen Van Der Post, Stefan Michael Bruno Bäumer, Peter Danny Van Voorst, Teunis Willem Tukker, Ferry Zijp, Han-Kwang Nienhuys, Jacobus Maria Antonius Van Den Eerenbeemd
  • Patent number: 10670974
    Abstract: A metrology apparatus for determining a characteristic of interest of a structure on a substrate, the structure having diffractive properties, the apparatus comprising: focusing optics configured to focus illumination radiation comprising a plurality of wavelengths onto the structure; a first detector configured to detect at least part of the illumination radiation which has been diffracted from the structure; and additional optics configured to produce, on at least a portion of the first detector, a wavelength-dependent spatial distribution of different wavelengths of the illumination radiation which has been diffracted from the structure, wherein the first detector is arranged to detect at least a non-zero diffraction order of the illumination radiation which has been diffracted from the structure.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: June 2, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Gerrit Jacobus Hendrik Brussaard, Petrus Wilhelmus Smorenburg, Teis Johan Coenen, Niels Geypen, Peter Danny Van Voorst, Sander Bas Roobol
  • Publication number: 20200100350
    Abstract: There is described an optical system (400) for focusing a beam of radiation (B) on a region of interest of a substrate in a metrology apparatus. The beam of radiation comprises radiation in a soft X-ray or Extreme Ultraviolet spectral range. The optical system comprises a first reflector system (410) and a second reflector system (412). Each of the first and second reflector systems (410, 412) comprises a finite-to-finite Wolter reflector system. The optical system (400) is configured to form, on the region of interest, a demagnified image (414) of an object (416) comprising an apparent source of the beam of radiation (B).
    Type: Application
    Filed: September 10, 2019
    Publication date: March 26, 2020
    Applicant: ASML Netherlands B.V.
    Inventor: Peter Danny VAN VOORST
  • Patent number: 10451559
    Abstract: Disclosed is an inspection apparatus and associated method for measuring a target structure on a substrate. The inspection apparatus comprises an illumination source for generating measurement radiation; an optical arrangement for focusing the measurement radiation onto said target structure; and a compensatory optical device. The compensatory optical device may comprise an SLM operable to spatially modulate the wavefront of the measurement radiation so as to compensate for a non-uniform manufacturing defect in said optical arrangement. In alternative embodiments, the compensatory optical device may be located in the beam of measurement radiation, or in the beam of pump radiation used to generate high harmonic radiation in a HHG source. Where located in the beam of pump radiation, the compensatory optical device may be used to correct pointing errors, or impart a desired profile or varying illumination pattern in a beam of the measurement radiation.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: October 22, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Peter Danny Van Voorst, Nan Lin, Sander Bas Roobol, Simon Gijsbert Josephus Mathijssen, Sietse Thijmen Van Der Post
  • Publication number: 20190212660
    Abstract: An optical system delivers illuminating radiation and collects radiation after interaction with a target structure on a substrate. A measurement intensity profile is used to calculate a measurement of the property of the structure. The optical system may include a solid immersion lens. In a method, the optical system is controlled to obtain a first intensity profile using a first illumination profile and a second intensity profile using a second illumination profile. The profiles are used to derive a correction for mitigating the effect of, e.g., ghost reflections. Using, e.g., half-moon illumination profiles in different orientations, the method can measure ghost reflections even where a solid immersion lens would cause total internal reflection. The optical system may include a contaminant detection system to control a movement based on received scattered detection radiation. The optical system may include an optical component having a dielectric coating to enhance evanescent wave interaction.
    Type: Application
    Filed: August 21, 2017
    Publication date: July 11, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nitish KUMAR, Adrianus Johannes Hendrikus SCHELLEKENS, Sietse Thijmen VAN DER POST, Ferry ZIJP, Willem Maria Julia Marcel COENE, Peter Danny VAN VOORST, Duygu AKBULUT, Sarathi ROY
  • Publication number: 20190204757
    Abstract: A metrology apparatus for determining a characteristic of interest of a structure on a substrate, the structure having diffractive properties, the apparatus comprising: focusing optics configured to focus illumination radiation comprising a plurality of wavelengths onto the structure; a first detector configured to detect at least part of the illumination radiation which has been diffracted from the structure; and additional optics configured to produce, on at least a portion of the first detector, a wavelength-dependent spatial distribution of different wavelengths of the illumination radiation which has been diffracted from the structure, wherein the first detector is arranged to detect at least a non-zero diffraction order of the illumination radiation which has been diffracted from the structure.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 4, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Gerrit Jacobus Hendrik BRUSSAARD, Petrus Wilhelmus Smorenburg, Teis Johan Coenen, Niels Geypen, Peter Danny Van Voorst, Sander Bas Roobol
  • Patent number: 10330606
    Abstract: Disclosed is an inspection apparatus and associated method for measuring a target structure on a substrate. The inspection apparatus comprises an illumination source for generating measurement radiation; an optical arrangement for focusing the measurement radiation onto said target structure; and a compensatory optical device. The compensatory optical device may comprise an SLM operable to spatially modulate the wavefront of the measurement radiation so as to compensate for a non-uniform manufacturing defect in said optical arrangement. In alternative embodiments, the compensatory optical device may be located in the beam of measurement radiation, or in the beam of pump radiation used to generate high harmonic radiation in a HHG source. Where located in in the beam of pump radiation, the compensatory optical device may be used to correct pointing errors, or impart a desired profile or varying illumination pattern in a beam of the measurement radiation.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: June 25, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Peter Danny Van Voorst, Nan Lin, Sander Bas Roobol, Simon Gijsbert Josephus Mathijssen, Sietse Thijmen Van Der Post
  • Publication number: 20190072853
    Abstract: An optical system (OS) for focusing a beam of radiation (B) on a region of interest in a metrology apparatus is described. The beam of radiation (B) comprises radiation in a soft X-ray or Extreme Ultraviolet spectral range. The optical system (OS) comprises a first stage (S1) for focusing the beam of radiation at an intermediate focus region. The optical system (OS) comprises a second stage (S2) for focusing the beam of radiation from the intermediate focus region onto the region of interest. The first and second stages each comprise a Kirkpatrick-Baez reflector combination. At least one reflector comprises an aberration-correcting reflector.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 7, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Sietse Thijmen VAN DER POST, Stefan Michael Bruno BÄUMER, Peter Danny VAN VOORST, Teunis Willem TUKKER, Ferry ZIJP, Han-Kwang NIENHUYS, Jacobus Maria Antonius VAN DEN EERENBEEMD
  • Publication number: 20190049861
    Abstract: A beam (542, 556) of inspection radiation is generated by focusing infrared (IR) radiation (540) at a source location so as to generate the inspection radiation (542) by high-harmonic generation in a gas cell (532). An illumination optical system (512) focuses the inspection radiation into a spot (S) of radiation by imaging the source location onto a metrology target (T). In one embodiment, the same illumination optical system forms a spot of the IR radiation onto a target material. A spot of visible radiation is generated by second harmonic generation at the metrology target. The visible spot is observed by an alignment camera (564). A special alignment target (592) may be provided, or material present in or near the metrology target can be used. In another embodiment, the spot is imaged using a portion (758) of the inspection radiation reflected by the target.
    Type: Application
    Filed: July 17, 2018
    Publication date: February 14, 2019
    Inventors: Peter Danny VAN VOORST, Teunis Willem Tukker, Nan Lin, Han-Kwang Nienhuys
  • Patent number: 10185224
    Abstract: A method involving providing incident radiation of a first polarization state by an optical component into an interface of an object with an external environment, wherein a surface is provided adjacent the interface and separated by a gap from the interface, detecting, from incident radiation reflected from the interface and from the surface, radiation of a second different polarization state arising from the reflection of incident radiation of the first polarization at the interface as distinct from the radiation of the first polarization state in the reflected radiation, and producing a position signal representative of a relative position between the focus of the optical component and the object.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: January 22, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Ferry Zijp, Duygu Akbulut, Peter Danny Van Voorst, Jeroen Johan Maarten Van De Wijdeven, Koos Van Berkel
  • Publication number: 20190003981
    Abstract: Disclosed is an inspection apparatus and associated method for measuring a target structure on a substrate. The inspection apparatus comprises an illumination source for generating measurement radiation; an optical arrangement for focusing the measurement radiation onto said target structure; and a compensatory optical device. The compensatory optical device may comprise an SLM operable to spatially modulate the wavefront of the measurement radiation so as to compensate for a non-uniform manufacturing defect in said optical arrangement. In alternative embodiments, the compensatory optical device may be located in the beam of measurement radiation, or in the beam of pump radiation used to generate high harmonic radiation in a HHG source. Where located in the beam of pump radiation, the compensatory optical device may be used to correct pointing errors, or impart a desired profile or varying illumination pattern in a beam of the measurement radiation.
    Type: Application
    Filed: August 13, 2018
    Publication date: January 3, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Peter Danny Van Voorst, Nan Lin, Sander Bas Roobol, Simon Gijsbert Josephus Mathijssen, Sietse Thijmen Van Der Post
  • Publication number: 20180120714
    Abstract: A method involving providing incident radiation of a first polarization state by an optical component into an interface of an object with an external environment, wherein a surface is provided adjacent the interface and separated by a gap from the interface, detecting, from incident radiation reflected from the interface and from the surface, radiation of a second different polarization state arising from the reflection of incident radiation of the first polarization at the interface as distinct from the radiation of the first polarization state in the reflected radiation, and producing a position signal representative of a relative position between the focus of the optical component and the object.
    Type: Application
    Filed: April 19, 2016
    Publication date: May 3, 2018
    Applicant: ASML Netherlands B.V.
    Inventors: Ferry ZIJP, Duygu AKBULUT, Peter Danny VAN VOORST, Jeroen Johan Maarten VAN DE WIJDEVEN, Koos VAN BERKEL
  • Publication number: 20180073992
    Abstract: Disclosed is an inspection apparatus and associated method for measuring a target structure on a substrate. The inspection apparatus comprises an illumination source for generating measurement radiation; an optical arrangement for focusing the measurement radiation onto said target structure; and a compensatory optical device. The compensatory optical device may comprise an SLM operable to spatially modulate the wavefront of the measurement radiation so as to compensate for a non-uniform manufacturing defect in said optical arrangement. In alternative embodiments, the compensatory optical device may be located in the beam of measurement radiation, or in the beam of pump radiation used to generate high harmonic radiation in a HHG source. Where located in in the beam of pump radiation, the compensatory optical device may be used to correct pointing errors, or impart a desired profile or varying illumination pattern in a beam of the measurement radiation.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 15, 2018
    Applicant: ASML Netherlands B.V.
    Inventors: Peter Danny VAN VOORST, Nan Lin, Sander Bas Roobol, Simon Gijsbert Josephus Mathijssen, Sietse Thijmen Van Der Post
  • Patent number: 9811001
    Abstract: A method of position control of an optical component relative to a surface is disclosed. The method may include: obtaining a first signal by a first position measurement process; controlling relative movement between the optical component and the surface for a first range of motion using the first signal; obtaining a second signal by a second position measurement process different than the first position measurement process; and controlling relative movement between the optical component and the surface for a second range of motion using the second signal, the second range of motion being nearer the surface than the first range of motion.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: November 7, 2017
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Peter Danny Van Voorst, Duygu Akbulut, Koos Van Berkel, Jeroen Johan Maarten Van De Wijdeven, Ferry Zijp
  • Publication number: 20160266503
    Abstract: A method of position control of an optical component relative to a surface is disclosed. The method may include: obtaining a first signal by a first position measurement process; controlling relative movement between the optical component and the surface for a first range of motion using the first signal; obtaining a second signal by a second position measurement process different than the first position measurement process; and controlling relative movement between the optical component and the surface for a second range of motion using the second signal, the second range of motion being nearer the surface than the first range of motion.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 15, 2016
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Peter Danny Van Voorst, Duygu Akbulut, Koos Van Berkel, Jeroen Johan Maarten Van De Wijdeven, Ferry Zijp