Patents by Inventor Peter Demetri OLCOTT

Peter Demetri OLCOTT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240104767
    Abstract: Disclosed herein are methods and systems for identifying the location of a target region using a tumor identification (ID) profile. A tumor ID profile includes identification parameters that characterize the target region. The tumor ID profile may be used to facilitate the identification of multiple target regions and to evaluate whether it is safe to deliver radiation to the target regions at their updated locations. Also disclosed herein are methods for analyzing a dose distribution to a target region by generating a bounded dose volume histogram (bDVH) based on gamma criteria comprising a distance-to-agreement (DTA) criterion and a dose difference (DD) criterion. In one variation, a gamma-derived bDVH is used in a method for selecting gamma criteria values for evaluating a radiotherapy treatment plan.
    Type: Application
    Filed: August 25, 2023
    Publication date: March 28, 2024
    Inventors: Yevgen VORONENKO, Maksat HAYTMYRADOV, Peter Demetri OLCOTT, Lingxiong SHAO, Manoj V. NARAYANAN
  • Publication number: 20240082605
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 14, 2024
    Inventors: Yevgen VORONENKO, Jayakrishnan Janardhanan, Debashish Pal, Rostem Bassalow, Peter Demetri Olcott, Michael Kirk Owens
  • Publication number: 20230405359
    Abstract: Disclosed herein are methods for radiotherapy treatment plan optimization for irradiating one or more target regions using both an internal therapeutic radiation source (ITRS) and an external therapeutic radiation source (ETRS). One variation of a method comprises iterating through ITRS radiation dose values and ETRS radiation dose values to attain a cumulative dose that meets prescribed dose requirements. In some variations, an ITRS is an injectable compound that has a targeting backbone and a radionuclide, and images acquired using an imaging compound that has the same targeting backbone as the injectable compound can be used to calculate the radiation dose deliverable using the injectable ITRS, and also to calculate firing filters for delivering radiation using a biologically-guided radiation therapy (BGRT) system. Image data acquired from a previous treatment session may be used to adapt the dose provided by an ITRS and/or ETRS for a future treatment session.
    Type: Application
    Filed: April 14, 2023
    Publication date: December 21, 2023
    Inventors: Peter Demetri Olcott, Michael Kirk Owens, Debashish Pal
  • Publication number: 20230390585
    Abstract: Described herein is a graphical user interface that receives a user-specified treatment time value and displays the resultant dose distributions to a target region and/or organs-at-risk (OARs). The dose distributions are depicted as dose volume histograms (DVHs). The user-specified treatment time value may be adjusted as desired and the DVHs for the target region and/or OARs may be correspondingly updated. In some variations, the graphical user interface may comprise bounded DVHs for the target region and/or OARs, where bounds of the DVH represent the range of dose variability between a short treatment time (e.g., Tmin) and a long treatment time (e.g., Tmax). In some variations, the graphical user interface includes a command button that triggers fluence map optimization using the user-specified treatment time.
    Type: Application
    Filed: August 23, 2023
    Publication date: December 7, 2023
    Inventors: Aleksei PRIVALIKHIN, Yevgen VORONENKO, Peter Demetri OLCOTT
  • Publication number: 20230390580
    Abstract: Disclosed herein are systems and methods for adapting and/or updating radiotherapy treatment plans based on biological and/or physiological data and/or anatomical data extracted or calculated from imaging data acquired in real-time (e.g., during a treatment session). Functional imaging data acquired at the time of radiation treatment is used to modify a treatment plan and/or dose delivery instructions to provide a prescribed dose distribution to patient target regions. Also disclosed herein are methods for evaluating treatment plans based on imaging data acquired in real-time.
    Type: Application
    Filed: April 4, 2023
    Publication date: December 7, 2023
    Inventors: Michael Kirk Owens, Rostem BASSALOW, Peter Demetri OLCOTT, Yevgen VORONENKO, David Quentin LARKIN, Samuel MAZIN
  • Publication number: 20230393292
    Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.
    Type: Application
    Filed: May 2, 2023
    Publication date: December 7, 2023
    Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek, Brent Harper
  • Patent number: 11813481
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: November 14, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Debashish Pal, Ayan Mitra, Christopher Eric Brown, Peter Demetri Olcott, Yevgen Voronenko, Rostem Bassalow
  • Publication number: 20230356003
    Abstract: Disclosed herein are systems and methods for guiding the delivery of therapeutic radiation using incomplete or partial images acquired during a treatment session. A partial image does not have enough information to determine the location of a target region due to, for example, poor or low contrast and/or low SNR. The radiation fluence calculation methods described herein do not require knowledge or calculation of the target location, and yet may help to provide real-time image guided radiation therapy using arbitrarily low SNR images.
    Type: Application
    Filed: March 9, 2023
    Publication date: November 9, 2023
    Inventors: Yevgen VORONENKO, Peter Demetri Olcott, Debashish Pal, Rostem Bassalow
  • Patent number: 11801398
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: October 31, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Jayakrishnan Janardhanan, Debashish Pal, Rostem Bassalow, Peter Demetri Olcott, Michael Kirk Owens
  • Publication number: 20230256268
    Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.
    Type: Application
    Filed: November 16, 2022
    Publication date: August 17, 2023
    Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
  • Patent number: 11675097
    Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: June 13, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek, Brent Harper
  • Patent number: 11654300
    Abstract: Disclosed herein are methods for radiotherapy treatment plan optimization for irradiating one or more target regions using both an internal therapeutic radiation source (ITRS) and an external therapeutic radiation source (ETRS). One variation of a method comprises iterating through ITRS radiation dose values and ETRS radiation dose values to attain a cumulative dose that meets prescribed dose requirements. In some variations, an ITRS is an injectable compound that has a targeting backbone and a radionuclide, and images acquired using an imaging compound that has the same targeting backbone as the injectable compound can be used to calculate the radiation dose deliverable using the injectable ITRS, and also to calculate firing filters for delivering radiation using a biologically-guided radiation therapy (BGRT) system. Image data acquired from a previous treatment session may be used to adapt the dose provided by an ITRS and/or ETRS for a future treatment session.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: May 23, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Peter Demetri Olcott, Michael Kirk Owens, Debashish Pal
  • Patent number: 11648418
    Abstract: Disclosed herein are systems and methods for adapting and/or updating radiotherapy treatment plans based on biological and/or physiological data and/or anatomical data extracted or calculated from imaging data acquired in real-time (e.g., during a treatment session). Functional imaging data acquired at the time of radiation treatment is used to modify a treatment plan and/or dose delivery instructions to provide a prescribed dose distribution to patient target regions. Also disclosed herein are methods for evaluating treatment plans based on imaging data acquired in real-time.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: May 16, 2023
    Assignee: Reflexion Medical, Inc.
    Inventors: Michael Kirk Owens, Rostem Bassalow, Peter Demetri Olcott, Yevgen Voronenko, David Quentin Larkin, Samuel Mazin
  • Patent number: 11633626
    Abstract: Disclosed herein are systems and methods for guiding the delivery of therapeutic radiation using incomplete or partial images acquired during a treatment session. A partial image does not have enough information to determine the location of a target region due to, for example, poor or low contrast and/or low SNR. The radiation fluence calculation methods described herein do not require knowledge or calculation of the target location, and yet may help to provide real-time image guided radiation therapy using arbitrarily low SNR images.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: April 25, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Peter Demetri Olcott, Debashish Pal, Rostem Bassalow
  • Publication number: 20230087425
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Application
    Filed: July 29, 2022
    Publication date: March 23, 2023
    Inventors: Debashish PAL, Ayan MITRA, Christopher Eric BROWN, Peter Demetri OLCOTT, Yevgen VORONENKO, Rostem BASSALOW
  • Patent number: 11511133
    Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: November 29, 2022
    Assignee: RefleXion Medical, Inc.
    Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
  • Publication number: 20220342095
    Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.
    Type: Application
    Filed: March 17, 2022
    Publication date: October 27, 2022
    Inventors: Peter Demetri OLCOTT, Matthew Francis BIENIOSEK, Brent HARPER
  • Publication number: 20220305292
    Abstract: Disclosed herein are systems and methods for rapidly delivering high doses of radiation, also known as, flash dose radiotherapy or flash radiotherapy. One variation of a system for flash radiotherapy has a plurality of therapeutic radiation sources on a support structure (e.g., a gantry or arm) and configured to toward a patient target region, and a controller in communication with all of the therapeutic radiation sources. The controller is configured to activate the plurality of therapeutic radiation sources simultaneously so that the patient target region rapidly receives a high dose of radiation, e.g. the entire prescribed dose of radiation. In some variations, a flash radiotherapy system has a pulsed, high-power source that may be used to generate an X-ray pulse that delivers a dose having a dose rate from about 7.5 Gy/s to about 70 Gy/s. Flash radiotherapy systems may also include one or more imaging systems mounted on the support structure.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 29, 2022
    Inventors: Brent HARPER, David Quentin LARKIN, Peter Demetri OLCOTT, George Andrew ZDASIUK, David NETT, Victor CARBONI
  • Publication number: 20220288422
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Yevgen VORONENKO, Jayakrishnan JANARDHANAN, Debashish PAL, Rostem BASSALOW, Peter Demetri OLCOTT, Michael Kirk OWENS
  • Patent number: 11439844
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: September 13, 2022
    Assignee: RefleXion Medical, Inc.
    Inventors: Debashish Pal, Ayan Mitra, Christopher Eric Brown, Peter Demetri Olcott, Yevgen Voronenko, Rostem Bassalow