Patents by Inventor Peter E. Groenendijk

Peter E. Groenendijk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10513471
    Abstract: A process and system for preparing C2 to C5 hydrocarbons includes introducing a feed stream containing hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a first reaction zone, contacting the feed stream and a hybrid catalyst in the first reaction zone, introducing a reaction zone product stream into a water removal zone that is downstream from the first reaction zone, and introducing a product stream from the water removal zone into a second reaction zone, resulting in a final stream comprising C2 to C5 hydrocarbons. The hybrid catalyst includes a methanol synthesis component and a microporous solid acid component; the microporous solid acid component is a molecular sieve having 8-MR access. The water removal zone removes at least a portion of water from the reaction zone product stream.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 24, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Davy L. S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Barry B. Fish, Andrzej M. Malek
  • Publication number: 20190352239
    Abstract: A process and system for preparing C2 to C5 hydrocarbons includes introducing a feed stream containing hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a first reaction zone, contacting the feed stream and a hybrid catalyst in the first reaction zone, introducing a reaction zone product stream into a water removal zone that is downstream from the first reaction zone, and introducing a product stream from the water removal zone into a second reaction zone, resulting in a final stream comprising C2 to C5 hydrocarbons. The hybrid catalyst includes a methanol synthesis component and a microporous solid acid component; the microporous solid acid component is a molecular sieve having 8-MR access. The water removal zone removes at least a portion of water from the reaction zone product stream.
    Type: Application
    Filed: November 15, 2017
    Publication date: November 21, 2019
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Davy L.S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Barry B. Fish, Andrzej M. Malek
  • Publication number: 20190292122
    Abstract: The present invention provides methods for making propanal in a reaction comprising the oxidative coupling of methane (OCM) and oxygen as a reactant stream in a gas phase reaction, preferably in the presence of water or steam, to form ethylene, ethane, carbon dioxide (CO2), water and syngas (CO and H2) in a first reactor as an ethylene stream, and then forming propanal in a second reactor by feeding to the second reactor the ethylene stream with the syngas from the first reactor in the gas phase and hydroformylating in the presence of a catalyst for a water shift reaction. In the method, the ratio of H2 to CO in the syngas is maintained by either co-feeding steam into the first reactor or the second reactor to generate additional H2 in the syngas, or by forming CO in the second reactor from the water shift reaction by feeding the CO2 from the ethylene stream into the second reactor.
    Type: Application
    Filed: June 13, 2017
    Publication date: September 26, 2019
    Inventors: Steven L.F. Corthals, Thomas Davidian, Gerolamo Budroni, Peter E. Groenendijk
  • Patent number: 10329209
    Abstract: A process for preparing C2 and C3 olefins comprises contacting a feedstream including hydrogen, carbon monoxide, and a bifunctional catalyst in a reaction under certain specified conditions. The catalyst includes as components (1) chromium oxide and zinc oxide mixed metal oxides, and (2) a SAPO-34 molecular sieve. The resulting product of the reaction is relatively high in the target lower olefins and relatively low in less desirable products, including C2 and C3 paraffins, C4+ hydrocarbons, oxygenates, and methane, thereby reducing or eliminating the need for certain previously common and costly separations. The bifunctional catalyst as used in the inventive process also offers improvements in catalyst life in comparison with some methanol-to-olefins catalysts. The process may be carried out as a single unit operation.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: June 25, 2019
    Assignee: Dow Global Technologies, LLC
    Inventors: Davy Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
  • Publication number: 20180326352
    Abstract: A method and an integrated system for reducing CO2 emissions in industrial processes. The method and integrated system (100) capture carbon dioxide (CO2) gas from a first gas stream (104) with a chemical absorbent to produce a second gas stream (106) having a higher concentration of carbon monoxide (CO) gas and a lower concentration of CO2 gas as compared to first gas stream. The CO gas in the second gas stream is used to produce C5 to C20 hydrocarbons in an exothermic reaction (108) with hydrogen (H2) gas (138). At least a portion of the heat generated in the exothermic reaction is used to regenerate the chemical absorbent with the liberation of the CO2 gas (128) captured from the first gas stream. Heat captured during the exothermic reaction can, optionally, first be used to generate electricity, wherein the heat remaining after generating electricity is used to thermally regenerate the chemical absorbent.
    Type: Application
    Filed: November 14, 2016
    Publication date: November 15, 2018
    Applicant: Dow Global Technologies LLC
    Inventors: Thomas Davidian, Steven Corthals, Cornelis Biesheuvel, Matthijs Ruitenbeek, Andrzej Malek, Peter E. Groenendijk, Garmt R. Meima
  • Publication number: 20180305272
    Abstract: A process for preparing C2 and C3 olefins comprises contacting a feedstream including hydrogen, carbon monoxide, and a bifunctional catalyst in a reaction under certain specified conditions. The catalyst includes as components (1) chromium oxide and zinc oxide mixed metal oxides, and (2) a SAPO-34 molecular sieve. The resulting product of the reaction is relatively high in the target lower olefins and relatively low in less desirable products, including C2 and C3 paraffins, C4+ hydrocarbons, oxygenates, and methane, thereby reducing or eliminating the need for certain previously common and costly separations. The bifunctional catalyst as used in the inventive process also offers improvements in catalyst life in comparison with some methanol-to-olefins catalysts. The process may be carried out as a single unit operation.
    Type: Application
    Filed: September 7, 2016
    Publication date: October 25, 2018
    Applicant: Dow Global Technologies LLC
    Inventors: Davy Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
  • Patent number: 9919981
    Abstract: A feedstream comprising hydrogen and a gas selected from carbon monoxide, carbon dioxide, or a combination thereof is converted to a product mixture containing a combination of saturated and unsaturated two carbon atom and three carbon atom hydrocarbons via contact with a mixed catalyst comprising a mixed metal oxide catalyst selected from a copper oxide, copper oxide/zinc oxide, copper oxide/alumina, copper oxide/zinc oxide/alumina catalyst, a zinc oxide/chromium oxide catalyst, or a combination thereof, in admixture with a molecular sieve catalyst having a CHA, AEI, AEL, AFI, BEA, or DDR framework type, or a combination of such molecular sieves. Exemplary molecular sieve catalysts include SAPO-34, SAPO-18, SAPO-5, and Beta. Advantages include reduced production of C1 hydrocarbons, C4 and higher hydrocarbons, or both; long catalyst lifetimes; desirable conversions; and desirable proportions of C2 and C3 paraffins.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: March 20, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Adam Chojecki, Davy Nieskens, Thomas Davidian, Peter E. Groenendijk, Matthijs Ruitenbeek, Barry B. Fish, Max M. Tirtowidjojo, Garmt R. Meima
  • Publication number: 20170210679
    Abstract: A feedstream comprising hydrogen and a gas selected from carbon monoxide, carbon dioxide, or a combination thereof is converted to a product mixture containing a combination of saturated and unsaturated two carbon atom and three carbon atom hydrocarbons via contact with a mixed catalyst comprising a mixed metal oxide catalyst selected from a copper oxide, copper oxide/zinc oxide, copper oxide/alumina, copper oxide/zinc oxide/alumina catalyst, a zinc oxide/chromium oxide catalyst, or a combination thereof, in admixture with a molecular sieve catalyst having a CHA, AEI, AEL, AFI, BEA, or DDR framework type, or a combination of such molecular sieves. Exemplary molecular sieve catalysts include SAPO-34, SAPO-18, SAPO-5, and Beta. Advantages include reduced production of C1 hydrocarbons, C4 and higher hydrocarbons, or both; long catalyst lifetimes; desirable conversions; and desirable proportions of C2 and C3 paraffins.
    Type: Application
    Filed: July 8, 2015
    Publication date: July 27, 2017
    Applicant: Dow Global Technologies LLC
    Inventors: Adam CHOJECKI, Davy NIESKENS, Thomas DAVIDIAN, Peter E. GROENENDIJK, Matthijs RUITENBEEK, Barry B. FISH, Max M. TIRTOWIDJOJO, Garmt R. MEIMA
  • Patent number: 9073804
    Abstract: Conversion of synthesis gas to propylene is enhanced via a stepped process wherein a Fischer-Tropsch reaction is first carried out, followed by recovery of propylene produced thereby and then use of product ethylene and unreacted syngas in a hydroformylation reaction to produce propanol, which is then dehydrated to form additional propylene. The process enables significant enhancement of propylene yield that is efficient and makes use of ethylene that is a byproduct of Fischer-Tropsch processes that are employed primarily for production of higher olefins, such as hexene and octene. Thus, it can be carried out in conjunction with already on-line Fischer-Tropsch facilities.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: July 7, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Peter E. Groenendijk, Cornelis Hovingh
  • Publication number: 20130274356
    Abstract: Conversion of synthesis gas to propylene is enhanced via a stepped process wherein a Fischer-Tropsch reaction is first carried out, followed by recovery of propylene produced thereby and then use of product ethylene and unreacted syngas in a hydroformylation reaction to produce propanol, which is then dehydrated to form additional propylene. The process enables significant enhancement of propylene yield that is efficient and makes use of ethylene that is a byproduct of Fischer-Tropsch processes that are employed primarily for production of higher olefms, such as hexene and octene. Thus, it can be carried out in conjunction with already on-line Fischer-Tropsch facilities.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 17, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: Peter E. Groenendijk, Cornelis Hovingh
  • Patent number: 8382881
    Abstract: The invention provides a method for removing mercury from a liquid or gas hydrocarbon stream, mixtures thereof, including mixtures of liquid streams with a solid carbonaceous substance, by contacting the hydrocarbon stream with a composition comprising silver and a support material, wherein the composition as measured by ammonia chemisorption has a surface acidity in the range of 0.1-10.0 ?mole of irreversible NH3/g of the composition.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 26, 2013
    Inventors: Madan M. Bhasin, Mark K. Brayden, Foppe Dupius, Peter E. Groenendijk, Seyed R. Seyedmonir, Michael C. Smith, Fredrick W. Vance
  • Publication number: 20100126909
    Abstract: The invention provides a method for removing mercury from a liquid or gas hydrocarbon stream, mixtures thereof, including mixtures of liquid streams with a solid carbonaceous substance, by contacting the hydrocarbon stream with a composition comprising silver and a support material, wherein the composition as measured by ammonia chemisorption has a surface acidity in the range of 0.1-10.0 ?mole of irreversible NH3/g of the composition.
    Type: Application
    Filed: November 19, 2007
    Publication date: May 27, 2010
    Inventors: Madan M. Bhasin, Mark K. Brayden, Foppe Dupius, Peter E. Groenendijk, Seyed R. Seyedmonir, Michael C. Smith, Fredrick W. Vance, Frederick R. Van Buren, Marc A. Mangnus