Patents by Inventor Peter Egerton

Peter Egerton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10437126
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: October 8, 2019
    Assignee: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20170168367
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Inventors: Peter Egerton, Drew Gaskell
  • Patent number: 9618819
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: April 11, 2017
    Assignee: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20160306249
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 20, 2016
    Inventors: Peter Egerton, Drew Gaskell
  • Patent number: 9341909
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: May 17, 2016
    Assignee: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Patent number: 9110345
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: August 18, 2015
    Assignee: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20150177586
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Application
    Filed: January 29, 2015
    Publication date: June 25, 2015
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20140320947
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 30, 2014
    Applicant: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Patent number: 8749870
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: June 10, 2014
    Assignee: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20130301104
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Application
    Filed: May 28, 2013
    Publication date: November 14, 2013
    Applicant: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Patent number: 8514476
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: August 20, 2013
    Assignee: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Patent number: 7911674
    Abstract: Varying the optical absorption of an electrochromic device in situ allows optimal control over the depth and quality of laser patterning lines when patterning electrochromic devices. Accordingly, an electrochromic device comprises a target conductive layer, an absorbing electrochromic layer formed below the target layer, and an electrolyte layer formed below the absorbing electrochromic layer. The absorbing electrochromic layer is placed in a darkened state, and the target layer is laser ablated using a wavelength that is minimally absorbed in the target layer and a fluence level that does not ablate layers of the electrochromic device that are below the absorbing electrochromic layer. The absorbing electrochromic layer is placed in the darkened state by applying a predetermined control voltage to the electrochromic device, forming the electrochromic device by dark-state deposition, or forming an electrochromic device that is in its darkened state in an equilibrium state.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: March 22, 2011
    Assignee: Soladigm, Inc.
    Inventors: Drew Gaskell, Peter Egerton
  • Publication number: 20100165439
    Abstract: Varying the optical absorption of an electrochromic device in situ allows optimal control over the depth and quality of laser patterning lines when patterning electrochromic devices. Accordingly, an electrochromic device comprises a target conductive layer, an absorbing electrochromic layer formed below the target layer, and an electrolyte layer formed below the absorbing electrochromic layer. The absorbing electrochromic layer is placed in a darkened state, and the target layer is laser ablated using a wavelength that is minimally absorbed in the target layer and a fluence level that does not ablate layers of the electrochromic device that are below the absorbing electrochromic layer. The absorbing electrochromic layer is placed in the darkened state by applying a predetermined control voltage to the electrochromic device, forming the electrochromic device by dark-state deposition, or forming an electrochromic device that is in its darkened state in an equilibrium state.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 1, 2010
    Inventors: Drew Gaskell, Peter Egerton
  • Patent number: 7719751
    Abstract: A window assembly comprises a first conductive material layer, an electrochromic stack, a second conductive material layer and a seal. The first conductive material layer is formed on a substrate and comprises at least two zones electrically isolated from each other. The electrochromic stack is formed on a first selected zone of the first conductive material layer to overlap an edge of a second selected zone of the first conductive material layer. The second conductive material layer is formed on the electrochromic stack to overlap an edge of the second selected zone. A first bus bar is formed on the second selected zone to be within a sealed volume of the window assembly. A second bus bar is formed on the first selected zone to be outside the seal volume of the window assembly. The seal defines the sealed volume of the window assembly and seals the window assembly.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: May 18, 2010
    Assignee: Soladigm, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20100067090
    Abstract: A window assembly comprises a first conductive material layer, an electrochromic stack, a second conductive material layer and a seal. The first conductive material layer is formed on a substrate and comprises at least two zones electrically isolated from each other. The electrochromic stack is formed on a first selected zone of the first conductive material layer to overlap an edge of a second selected zone of the first conductive material layer. The second conductive material layer is formed on the electrochromic stack to overlap an edge of the second selected zone. A first bus bar is formed on the second selected zone to be within a sealed volume of the window assembly. A second bus bar is formed on the first selected zone to be outside the seal volume of the window assembly. The seal defines the sealed volume of the window assembly and seals the window assembly.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20090323160
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Application
    Filed: June 25, 2008
    Publication date: December 31, 2009
    Inventors: Peter Egerton, Drew Gaskell
  • Publication number: 20080074898
    Abstract: A light source assembly comprises: a light pipe and one or more tapered light collectors operative to reduce the angular distribution of light entering the light pipe from light sources at one or more ports. Dichroic filters and angle-dependent, wavelength selective pass filters control light flow into and through the light pipe. The tapered light collector is operative to reduce the angular distribution of light entering the light pipe. At least a first dichroic filter positioned in the light pipe optically between first and second light entrances is operative to pass first color light from the first light source toward the light port, and to reflect second color light from the second light source toward the light port.
    Type: Application
    Filed: September 10, 2007
    Publication date: March 27, 2008
    Applicant: Bookham Technology plc
    Inventors: Rad Sommer, Peter Egerton, Rance Fortenberry, Brett Bryars, Michael Scobey
  • Publication number: 20070291505
    Abstract: A light source assembly (212) for providing a homogenized light beam (224) includes a first light source (234), a second light source (236), and an optical pipe (228) that defines a pipe passageway (228A). The first light source (234) generates a first light (234A) that is directed into the pipe passageway (228A) at a first region (228I). The second light source (236) generates a second light (236A) that is directed into the pipe passageway (228A) at a second region (228H) that is different than the first region (228I). The optical pipe (228) homogenizing the first light (234A) and the second light (236A). Additionally, the light source assembly (212) can include a third light source (238) that generates a third light (238A) that is directed into the optical pipe (228) at a third region (228G) that is different than the first region (228I) and the second region (228H).
    Type: Application
    Filed: August 9, 2006
    Publication date: December 20, 2007
    Inventors: Rance Fortenberry, Peter Egerton, Rad Sommer, Mike Scobey, Brett Bryars
  • Patent number: 6362878
    Abstract: Improved calibration of optical wavelength measuring instruments. In a first embodiment, improved calibration is achieved in an optical wavelength measuring instrument by performing calibration measurements at a plurality of known wavelengths and using an average calibration constant derived from the plurality of measurements. In a second embodiment, improved calibration is achieved by performing calibration measurements at a plurality of known wavelengths and calculating a linear or higher order calibration model, or a periodic model. These approaches may be extended by segmenting the wavelength range and using different calculated calibration values, or different calibration models, for each segment.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: March 26, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Gary Wang, Paul S. Bussard, Zoltan D. Azary, Kenneth R. Wildnauer, Peter Egerton
  • Patent number: 6249343
    Abstract: Wavelength reference standard using multiple gasses and calibration methods using same. A wavelength reference using absorption lines of multiple gasses provides stable reference wavelengths over multiple regions of interest of the optical spectrum. The gasses may be in separate cells or combined in one cell. Improved calibration using the reference is achieved by performing calibration measurements at a plurality of known wavelengths and using an average calibration constant derived from the plurality of measurements. In a second embodiment, improved calibration is achieved by performing calibration measurements at a plurality of known wavelengths and calculating a higher order calibration model, such as a least-squares linear fit. Both approached may be extended by segmenting the wavelength range and using calculated calibration values for each segment.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 19, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Gary Wang, Peter Egerton, Kenneth R. Wildnauer