Patents by Inventor Peter Eisenberger

Peter Eisenberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230211278
    Abstract: A system and a method for continuously separating carbon dioxide from gas mixtures, utilizing a continuous loop of porous monoliths which support a sorbent within its pores. Continuously exposing a portion of the continuous loop of monoliths to a flow of gas mixture containing a minor proportion of carbon dioxide, to adsorb carbon dioxide from the flow. The loop passes through a sealed regeneration and carbon dioxide capture assembly located astride a portion of the loop, and which is capable of sealingly containing a monolith in relative movement through the assembly. The assembly chamber comprises a plurality of separately sealed zones, including at least one zone for purging oxygen from the monoliths, -a subsequent zone for heating the monolith to release the adsorbed carbon dioxide, and another cooling zone for cooling the monolith prior to reentering the adsorption portion of the loop where it is exposed to oxygen.
    Type: Application
    Filed: June 9, 2021
    Publication date: July 6, 2023
    Inventors: Peter Eisenberger, Eric W. Ping, Miles Sakwa-Novak, Jed Pruett, Robert Klepper, Sarah Wyper
  • Publication number: 20230149896
    Abstract: There is provided a structurally stable monolith substrate, suitable to provide carbon dioxide capture structure for removing carbon dioxide from air, having two major opposed surfaces, and further having a plurality of longitudinal channels extending between and opening through the two major opposed surfaces of the structurally stable monolith substrate; and a macroporous coating, adhered to the interior wall surfaces of the longitudinal channels, comprising an adherent, coating formed of cohered, compact mesoporous particles each being formed of a material that is compatible with the material forming the underlying substrate structure so as to become adherent thereto when coated. The mesoporous particles are capable of supporting in their mesopores a sorbent for CO2 There is also provided a method for forming the monolith and a system for utilizing the monolith as part of a CO2 capture structure, within the system, to remove CO2 from the atmosphere.
    Type: Application
    Filed: March 22, 2022
    Publication date: May 18, 2023
    Inventors: Peter EISENBERGER, Eric W. PING, Miles SAKWA-NOVAK
  • Publication number: 20230023050
    Abstract: A system and method for, removing carbon dioxide from a carbon dioxide laden gas mixture, the system comprising a group of carbon dioxide removal structures moving along a closed curve track. At one location along the track is located a desorption or regeneration box, into which each capture structure passes in order to be regenerated. The majority of the CO2 removal structures are fed ambient air, or an admixture of ambient air with a minor portion of a flue gas, and exhaust CO2-lean air. At least one selected such removal structure within each group, at a location immediately preceding its entry into the capture structure, is fed a flue gas comprising at least 4% CO2 by volume. A method for removing carbon dioxide from the atmosphere is provided utilizing a system operating in the same manner as the preceding system.
    Type: Application
    Filed: November 21, 2020
    Publication date: January 26, 2023
    Inventors: Peter Eisenberger, Eric Ping, Miles Sakwa-Novak
  • Publication number: 20210146303
    Abstract: A method for removing carbon dioxide directly from ambient air, using a sorbent under ambient conditions, to obtain relatively pure CO2. The CO2 is removed from the sorbent using process heat, preferably in the form of steam, at a temperature in the range of not greater than about 130° C., to capture the relatively pure CO2 and to regenerate the sorbent for repeated use. Increased efficiency can be achieved by admixing with the ambient air, prior to contacting the sorbent, a minor amount of a preferably pretreated effluent gas containing a higher concentration of carbon dioxide. The captured carbon dioxide can be stored for further use, or sequestered permanently. The above method provides purified carbon dioxide for further use in agriculture and chemical processes, or for permanent sequestration.
    Type: Application
    Filed: January 27, 2021
    Publication date: May 20, 2021
    Inventor: Peter Eisenberger
  • Publication number: 20200047116
    Abstract: A method for removing carbon dioxide directly from ambient air, using a sorbent under ambient conditions, to obtain relatively pure CO2. The CO2 is removed from the sorbent using process heat, preferably in the form of steam, at a temperature in the range of not greater than about 130° C., to capture the relatively pure CO2 and to regenerate the sorbent for repeated use. Increased efficiency can be achieved by admixing with the ambient air, prior to contacting the sorbent, a minor amount of a preferably pretreated effluent gas containing a higher concentration of carbon dioxide. The captured carbon dioxide can be stored for further use, or sequestered permanently. The above method provides purified carbon dioxide for further use in agriculture and chemical processes, or for permanent sequestration.
    Type: Application
    Filed: March 13, 2019
    Publication date: February 13, 2020
    Inventor: Peter Eisenberger
  • Publication number: 20200009504
    Abstract: A method and a system capable of removing carbon dioxide directly from ambient air, and obtaining relatively pure CO2. The method comprises the steps of generating usable and process heat from a primary production process, applying the process heat from said primary process to co-generate substantially saturated steam, alternately repeatedly exposing a sorbent to removal and to capture regeneration system phases, wherein said sorbent is alternately exposed to a flow of ambient air during said removal phase, to sorb, and therefore remove, carbon dioxide from said ambient air, and to a flow of the process steam during the regeneration and capture phase, to remove the sorbed carbon dioxide, thus regenerating such sorbent, and capturing in relatively pure form the removed carbon dioxide.
    Type: Application
    Filed: July 10, 2019
    Publication date: January 9, 2020
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Publication number: 20200011298
    Abstract: An integrated system for exploiting renewable energy sources based upon carbon dioxide captured from the atmosphere is provided, the system comprising: a solar energy collector; apparatus for capturing CO2 from the atmosphere; a wind power driven electrical generator; water power driven electrical generator; electric power distribution control means from the renewable energy sources; energy storage systems; water desalinating means and water electrolysis means powered by the renewably generated electricity; hydrocarbon fuel preparation means utilizing the hydrogen and the carbon dioxide generated by this system; and a body of saline water adjacent the land on which the integrated system is built.
    Type: Application
    Filed: August 26, 2019
    Publication date: January 9, 2020
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 10512880
    Abstract: A system for removing carbon dioxide from a carbon dioxide laden gas mixture, the system comprising two groups of carbon dioxide removal structures, each removal structure within each group comprising a porous solid mass substrate supported on the structure; and a sorbent that is capable of adsorbing or binding to carbon dioxide, to remove carbon dioxide from a gas mixture, the sorbent being supported upon the surfaces of the porous mass substrate solid; an endless loop support for each of the groups of the removal structures, the endless loop support being so arranged as to move the support structures of each group along a closed curve while being exposed to a stream of the gas mixture; and a sealable regeneration box at one location along each of the endless loop supports, in which, when a porous solid mass substrate is sealed in place therein, carbon dioxide adsorbed upon the sorbent is stripped from the sorbent and the sorbent regenerated; each removal structural supporting a porous substrate in a positio
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: December 24, 2019
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 10413866
    Abstract: A method and a system capable of removing carbon dioxide directly from ambient air, and obtaining relatively pure CO2. The method comprises the steps of generating usable and process heat from a primary production process; applying the process heat from said primary process to co-generate substantially saturated steam, alternately repeatedly exposing a sorbent to removal and to capture regeneration system phases, wherein said sorbent is alternately exposed to a flow of ambient air during said removal phase, to sorb, and therefore remove, carbon dioxide from said ambient air, and to a flow of the process steam during the regeneration and capture phase, to remove the sorbed carbon dioxide, thus regenerating such sorbent, and capturing in relatively pure form the removed carbon dioxide. The sorbent can be carried on a porous thin flexible sheet constantly in motion between the removal location and the regeneration location.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 17, 2019
    Inventor: Peter Eisenberger
  • Patent number: 10239017
    Abstract: A method for removing carbon dioxide directly from ambient air, using a sorbent under ambient conditions, to obtain relatively pure CO2. The CO2 is removed from the sorbent using process heat, preferably in the form of steam, at a temperature in the range of not greater than about 130° C., to capture the relatively pure CO2 and to regenerate the sorbent for repeated use. Increased efficiency can be achieved by admixing with the ambient air, prior to contacting the sorbent, a minor amount of a preferably pretreated effluent gas containing a higher concentration of carbon dioxide. The captured carbon dioxide can be stored for further use, or sequestered permanently. The above method provides purified carbon dioxide for further use in agriculture and chemical processes, or for permanent sequestration.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: March 26, 2019
    Inventor: Peter Eisenberger
  • Publication number: 20180214822
    Abstract: A method for removing carbon dioxide directly from ambient air, using a sorbent under ambient conditions, to obtain relatively pure CO2. The CO2 is removed from the sorbent using process heat, preferably in the form of steam, at a temperature in the range of not greater than about 130° C., to capture the relatively pure CO2 and to regenerate the sorbent for repeated use. Increased efficiency can be achieved by admixing with the ambient air, prior to contacting the sorbent, a minor amount of a preferably pretreated effluent gas containing a higher concentration of carbon dioxide. The captured carbon dioxide can be stored for further use, or sequestered permanently. The above method provides purified carbon dioxide for further use in agriculture and chemical processes, or for permanent sequestration.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 2, 2018
    Inventor: Peter Eisenberger
  • Publication number: 20180169568
    Abstract: A system for removing carbon dioxide from a carbon dioxide laden gas mixture, the system comprising two groups of carbon dioxide removal structures, each removal structure within each group comprising a porous solid mass substrate supported on the structure; and a sorbent that is capable of adsorbing or binding to carbon dioxide, to remove carbon dioxide from a gas mixture, the sorbent being supported upon the surfaces of the porous mass substrate solid; an endless loop support for each of the groups of the removal structures, the endless loop support being so arranged as to move the support structures of each group along a closed curve while being exposed to a stream of the gas mixture; and a sealable regeneration box at one location along each of the endless loop supports, in which, when a porous solid mass substrate is sealed in place therein, carbon dioxide adsorbed upon the sorbent is stripped from the sorbent and the sorbent regenerated; each removal structural supporting a porous substrate in a positio
    Type: Application
    Filed: February 17, 2018
    Publication date: June 21, 2018
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 9975087
    Abstract: A system and method of reducing the net carbon dioxide footprint of an industrial process that generates power from the combustion of hydrocarbon fuels in which ambient air is admixed with up to 50% by volume of an effluent gas from the power generator of the industrial process, in order to substantially increase the CO2 concentration in the air prior to treatment. The treatment comprises adsorbing CO2 from the admixed ambient air utilizing a cooled, porous substrate-supported amine adsorbent, wherein the porous substrate initially contacts the mixed ambient air containing condensed water in its pores, which act as an intrinsic coolant with respect to the exothermic heat generated by the adsorption process.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: May 22, 2018
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 9937461
    Abstract: A structure and system for the adsorption of carbon dioxide from air, the system comprising a sorbent structure comprising a porous substrate having a porous alumina coating on the surfaces of said substrate, and the sorbent for carbon dioxide is embedded on the surfaces of said porous alumina coating. The substrate is preferably a porous monolith, formed from silica or mesocellular foam. The sorbent is an amine group-containing material, preferably loaded at 40 to 60 percent by volume relative to the porous alumina coating.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 10, 2018
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 9925488
    Abstract: A system for removing carbon dioxide from a carbon dioxide laden gas mixture, the system comprising two groups of carbon dioxide removal structures, each removal structure within each group comprising a porous solid mass substrate supported on the structure and a sorbent that is capable of adsorbing or binding to carbon dioxide, to remove carbon dioxide from a gas mixture, the sorbent being supported upon the surfaces of the porous mass substrate solid; an endless loop support for each of the groups of the removal structures, the endless loop support being so arranged as to move the support structures of each group along a closed curve while being exposed to a stream of the gas mixture; and a sealable regeneration box at one location along each of the endless loop supports, in which, when a porous solid mass substrate is sealed in place therein, carbon dioxide adsorbed upon the sorbent is stripped from the sorbent and the sorbent regenerated; each removal structural supporting a porous substrate in a position
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: March 27, 2018
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 9908080
    Abstract: A system for removing carbon dioxide from an atmosphere to reduce global warming including an air extraction system that collects carbon dioxide from the atmosphere through a medium and removes carbon dioxide from the medium; a sequestration system that isolates the removed carbon dioxide to a location for at least one of storage and generation of a renewable carbon fuel; and one or more power supplying units that supply heat to the air extraction system to remove the carbon dioxide from the medium, at least one of the one or more power supplying units being a fossil fuel plant.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: March 6, 2018
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 9878286
    Abstract: A method for removing carbon dioxide directly from ambient air, using a sorbent under ambient conditions, to obtain relatively pure CO2. The CO2 is removed from the sorbent using process heat, preferably in the form of steam, at a temperature in the range of not greater than about 130° C., to capture the relatively pure CO2 and to regenerate the sorbent for repeated use. Increased efficiency can be achieved by admixing with the ambient air, prior to contacting the sorbent, a minor amount of a preferably pretreated effluent gas containing a higher concentration of carbon dioxide. The captured carbon dioxide can be stored for further use, or sequestered permanently. The above method provides purified carbon dioxide for further use in agriculture and chemical processes, or for permanent sequestration.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: January 30, 2018
    Inventor: Peter Eisenberger
  • Publication number: 20170361271
    Abstract: A method and a system capable of removing carbon dioxide directly from ambient air, and obtaining relatively pure CO2. The method comprises the steps of generating usable and process heat from a primary production process; applying the process heat from said primary process to co-generate substantially saturated steam, alternately repeatedly exposing a sorbent to removal and to capture regeneration system phases, wherein said sorbent is alternately exposed to a flow of ambient air during said removal phase, to sorb, and therefore remove, carbon dioxide from said ambient air, and to a flow of the process steam during the regeneration and capture phase, to remove the sorbed carbon dioxide, thus regenerating such sorbent, and capturing in relatively pure form the removed carbon dioxide.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventor: Peter Eisenberger
  • Publication number: 20170321656
    Abstract: An integrated system for exploiting renewable energy sources based upon carbon dioxide captured from the atmosphere is provided, the system comprising: a solar energy collector; apparatus for capturing CO2 from the atmosphere; a wind power driven electrical generator; water power driven electrical generator; electric power distribution control means from the renewable energy sources; energy storage systems; water desalinating means and water electrolysis means powered by the renewably generated electricity; hydrocarbon fuel preparation means utilizing the hydrogen and the carbon dioxide generated by this system; and a body of saline water adjacent the land on which the integrated system is built.
    Type: Application
    Filed: April 19, 2017
    Publication date: November 9, 2017
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 9776131
    Abstract: A method and a system capable of removing carbon dioxide directly from ambient air, and obtaining relatively pure CO2. The method comprises the steps of generating usable and process heat from a primary production process; applying the process heat from said primary process to co-generate substantially saturated steam, alternately repeatedly exposing a sorbent to removal and to capture regeneration system phases, wherein said sorbent is alternately exposed to a flow of ambient air during said removal phase, to sorb, and therefore remove, carbon dioxide from said ambient air, and to a flow of the process steam during the regeneration and capture phase, to remove the sorbed carbon dioxide, thus regenerating such sorbent, and capturing in relatively pure form the removed carbon dioxide. The sorbent can be carried on a porous thin flexible sheet constantly in motion between the removal location and the regeneration location.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: October 3, 2017
    Inventor: Peter Eisenberger