Patents by Inventor Peter Elving Anderson-Sprecher

Peter Elving Anderson-Sprecher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11660749
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating a spatio-temporal object inventory based on object observations from mobile robots and determining, based on the spatio-temporal object inventory, monitoring parameters for the mobile robots for one or more future time periods. Some implementations relate to using the spatio-temporal object inventory to determine a quantity of movements of objects that occur in one or more areas of the environment when one or more particular criteria are satisfied—and using that determination to determine monitoring parameters that can be utilized to provide commands to one or more of the mobile robots that influence one or more aspects of movements of the mobile robots at future time periods when the one or more particular criteria are also satisfied.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: May 30, 2023
    Assignee: Boston Dynamics, Inc.
    Inventor: Peter Elving Anderson-Sprecher
  • Publication number: 20220001535
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating a spatio-temporal object inventory based on object observations from mobile robots and determining, based on the spatio-temporal object inventory, monitoring parameters for the mobile robots for one or more future time periods. Some implementations relate to using the spatio-temporal object inventory to determine a quantity of movements of objects that occur in one or more areas of the environment when one or more particular criteria are satisfied—and using that determination to determine monitoring parameters that can be utilized to provide commands to one or more of the mobile robots that influence one or more aspects of movements of the mobile robots at future time periods when the one or more particular criteria are also satisfied.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: Boston Dynamics, Inc.
    Inventor: Peter Elving Anderson-Sprecher
  • Patent number: 11161238
    Abstract: A method includes receiving a first time-parameterized path for the first robotic device, and an indication of a second robotic device having a second time-parameterized path that overlaps with the first time-parameterized path at a first location. The method also includes executing, by the first robotic device, a first portion of the first time-parameterized path before reaching the first location, wherein execution of the first portion corresponds to a first rate of progress of the first robotic device along the first time-parameterized path. The first robotic device then receives a communication signal from the second robotic device indicating a second rate of progress of the second robotic device along the second time-parameterized path. The method then includes the first robotic device determining a difference between the first rate of progress and the second rate of progress, and modifying execution of the first time-parameterized path based on the determined difference.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 2, 2021
    Assignee: Intrinsic Innovation LLC
    Inventors: Geoffrey Lalonde, Peter Elving Anderson-Sprecher
  • Patent number: 11123865
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating a spatio-temporal object inventory based on object observations from mobile robots and determining, based on the spatio-temporal object inventory, monitoring parameters for the mobile robots for one or more future time periods. Some implementations relate to using the spatio-temporal object inventory to determine a quantity of movements of objects that occur in one or more areas of the environment when one or more particular criteria are satisfied—and using that determination to determine monitoring parameters that can be utilized to provide commands to one or more of the mobile robots that influence one or more aspects of movements of the mobile robots at future time periods when the one or more particular criteria are also satisfied.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: September 21, 2021
    Assignee: Boston Dynamics, Inc.
    Inventor: Peter Elving Anderson-Sprecher
  • Publication number: 20190291267
    Abstract: A method includes receiving a first time-parameterized path for the first robotic device, and an indication of a second robotic device having a second time-parameterized path that overlaps with the first time-parameterized path at a first location. The method also includes executing, by the first robotic device, a first portion of the first time-parameterized path before reaching the first location, wherein execution of the first portion corresponds to a first rate of progress of the first robotic device along the first time-parameterized path. The first robotic device then receives a communication signal from the second robotic device indicating a second rate of progress of the second robotic device along the second time-parameterized path. The method then includes the first robotic device determining a difference between the first rate of progress and the second rate of progress, and modifying execution of the first time-parameterized path based on the determined difference.
    Type: Application
    Filed: June 14, 2019
    Publication date: September 26, 2019
    Inventors: Geoffrey Lalonde, Peter Elving Anderson-Sprecher
  • Publication number: 20190143515
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating a spatio-temporal object inventory based on object observations from mobile robots and determining, based on the spatio-temporal object inventory, monitoring parameters for the mobile robots for one or more future time periods. Some implementations relate to using the spatio-temporal object inventory to determine a quantity of movements of objects that occur in one or more areas of the environment when one or more particular criteria are satisfied—and using that determination to determine monitoring parameters that can be utilized to provide commands to one or more of the mobile robots that influence one or more aspects of movements of the mobile robots at future time periods when the one or more particular criteria are also satisfied.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventor: Peter Elving Anderson-Sprecher
  • Patent number: 10209063
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for using sensor-based observations from multiple agents (e.g., mobile robots and/or fixed sensors) in an environment to estimate the pose of an object in the environment at a target time and to estimate an uncertainty measure for that pose. Various implementations generate a multigraph based on a group of observations from multiple agents, where the multigraph includes a reference frame node, object nodes, and a plurality edges connecting the nodes. In some implementations, a composite pose and composite uncertainty measure are generated for each of a plurality of simple paths along the edges of the multigraph that connect the reference frame node to a given object node—and a pose and uncertainty measure for an object identifier associated with the given object node is generated based on the composite poses and the composite uncertainty measures.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: February 19, 2019
    Assignee: X DEVELOPMENT LLC
    Inventor: Peter Elving Anderson-Sprecher
  • Patent number: 10195740
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating a spatio-temporal object inventory based on object observations from mobile robots and determining, based on the spatio-temporal object inventory, monitoring parameters for the mobile robots for one or more future time periods. Some implementations relate to using the spatio-temporal object inventory to determine a quantity of movements of objects that occur in one or more areas of the environment when one or more particular criteria are satisfied—and using that determination to determine monitoring parameters that can be utilized to provide commands to one or more of the mobile robots that influence one or more aspects of movements of the mobile robots at future time periods when the one or more particular criteria are also satisfied.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: February 5, 2019
    Assignee: X DEVELOPMENT LLC
    Inventor: Peter Elving Anderson-Sprecher
  • Patent number: 10127677
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating and using a spatio-temporal model that defines pose values for a plurality of objects in an environment and corresponding times associated with the pose values. Some implementations relate to using observations for one or more robots in an environment to generate a spatio-temporal model that defines pose values and corresponding times for multiple objects in the environment. In some of those implementations, the model is generated based on uncertainty measures associated with the pose values. Some implementations relate to utilizing a generated spatio-temporal model to determine the pose for each of one or more objects an environment at a target time. The pose for an object at a target time is determined based on one or more pose values for the object selected based on a corresponding measurement time, uncertainty measure, and/or source associated with the pose values.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: November 13, 2018
    Assignee: X DEVELOPMENT LLC
    Inventors: Peter Elving Anderson-Sprecher, Julian Mac Neille Mason, Rohit Ramesh Saboo
  • Patent number: 9821463
    Abstract: Methods and systems for determining and presenting virtual safety cages are provided. An example method may involve receiving an instruction for a robotic device to perform a physical action in a physical environment occupied by the robotic device. The method may also involve, responsive to receiving the instruction, and based on one or more parameters of one or more physical components of the robotic device, determining one or more estimated trajectories along which the one or more physical components of the robotic device are estimated to move as the robotic device performs the physical action. The method may further involve, based on the one or more estimated trajectories, determining a virtual representation of a space that the robotic device is estimated to occupy in the physical environment while performing the physical action. The method may then involve providing, into the physical environment, an indication of a location of the space.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: November 21, 2017
    Assignee: X Development LLC
    Inventors: James J. Kuffner, Jr., Peter Elving Anderson-Sprecher
  • Patent number: 9691151
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating and using a spatio-temporal model that defines pose values for a plurality of objects in an environment and corresponding times associated with the pose values. Some implementations relate to using observations for one or more robots in an environment to generate a spatio-temporal model that defines pose values and corresponding times for multiple objects in the environment. In some of those implementations, the model is generated based on uncertainty measures associated with the pose values. Some implementations relate to utilizing a generated spatio-temporal model to determine the pose for each of one or more objects an environment at a target time. The pose for an object at a target time is determined based on one or more pose values for the object selected based on a corresponding measurement time, uncertainty measure, and/or source associated with the pose values.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: June 27, 2017
    Assignee: X DEVELOPMENT LLC
    Inventors: Peter Elving Anderson-Sprecher, Julian Mac Neille Mason, Rohit Ramesh Saboo
  • Publication number: 20170097232
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for using sensor-based observations from multiple agents (e.g., mobile robots and/or fixed sensors) in an environment to estimate the pose of an object in the environment at a target time and to estimate an uncertainty measure for that pose. Various implementations generate a multigraph based on a group of observations from multiple agents, where the multigraph includes a reference frame node, object nodes, and a plurality edges connecting the nodes. In some implementations, a composite pose and composite uncertainty measure are generated for each of a plurality of simple paths along the edges of the multigraph that connect the reference frame node to a given object node—and a pose and uncertainty measure for an object identifier associated with the given object node is generated based on the composite poses and the composite uncertainty measures.
    Type: Application
    Filed: October 3, 2015
    Publication date: April 6, 2017
    Inventor: Peter Elving Anderson-Sprecher
  • Publication number: 20170072563
    Abstract: Methods, apparatus, systems, and computer-readable media are provided for generating a spatio-temporal object inventory based on object observations from mobile robots and determining, based on the spatio-temporal object inventory, monitoring parameters for the mobile robots for one or more future time periods. Some implementations relate to using the spatio-temporal object inventory to determine a quantity of movements of objects that occur in one or more areas of the environment when one or more particular criteria are satisfied—and using that determination to determine monitoring parameters that can be utilized to provide commands to one or more of the mobile robots that influence one or more aspects of movements of the mobile robots at future time periods when the one or more particular criteria are also satisfied.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 16, 2017
    Inventor: Peter Elving Anderson-Sprecher
  • Patent number: 9574883
    Abstract: Systems and methods are provided for generating maps with semantic labels. A computing device can determine a first map that includes features located at first positions and semantic labels located at semantic positions, and determine a second map that includes at least some of the features located at second positions. The computing device can identify a first region with fixed features located at first positions and corresponding equivalent second positions. The computing device can identify a second region with moved features located at first positions and corresponding non-equivalent second positions. The computing device can determine one or more transformations between first positions and second positions. The computing device can assign the semantic labels to the second map at second semantic positions, where the second semantic positions are the same in the first region, and where the second semantic positions in the second region are based on the transformation(s).
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: February 21, 2017
    Assignee: X Development LLC
    Inventors: Kevin William Watts, Julian Mac Neille Mason, Peter Elving Anderson-Sprecher
  • Publication number: 20170043484
    Abstract: Methods and systems for determining and presenting virtual safety cages are provided. An example method may involve receiving an instruction for a robotic device to perform a physical action in a physical environment occupied by the robotic device. The method may also involve, responsive to receiving the instruction, and based on one or more parameters of one or more physical components of the robotic device, determining one or more estimated trajectories along which the one or more physical components of the robotic device are estimated to move as the robotic device performs the physical action. The method may further involve, based on the one or more estimated trajectories, determining a virtual representation of a space that the robotic device is estimated to occupy in the physical environment while performing the physical action. The method may then involve providing, into the physical environment, an indication of a location of the space.
    Type: Application
    Filed: November 1, 2016
    Publication date: February 16, 2017
    Inventors: James J. Kuffner, Peter Elving Anderson-Sprecher
  • Patent number: 9522471
    Abstract: Methods and systems for determining and presenting virtual safety cages are provided. An example method may involve receiving an instruction for a robotic device to perform a physical action in a physical environment occupied by the robotic device. The method may also involve, responsive to receiving the instruction, and based on one or more parameters of one or more physical components of the robotic device, determining one or more estimated trajectories along which the one or more physical components of the robotic device are estimated to move as the robotic device performs the physical action. The method may further involve, based on the one or more estimated trajectories, determining a virtual representation of a space that the robotic device is estimated to occupy in the physical environment while performing the physical action. The method may then involve providing, into the physical environment, an indication of a location of the space.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 20, 2016
    Assignee: Google Inc.
    Inventors: James J. Kuffner, Jr., Peter Elving Anderson-Sprecher
  • Publication number: 20160282126
    Abstract: Systems and methods are provided for generating maps with semantic labels. A computing device can determine a first map that includes features located at first positions and semantic labels located at semantic positions, and determine a second map that includes at least some of the features located at second positions. The computing device can identify a first region with fixed features located at first positions and corresponding equivalent second positions. The computing device can identify a second region with moved features located at first positions and corresponding non-equivalent second positions. The computing device can determine one or more transformations between first positions and second positions. The computing device can assign the semantic labels to the second map at second semantic positions, where the second semantic positions are the same in the first region, and where the second semantic positions in the second region are based on the transformation(s).
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Kevin William Watts, Julian Mac Neille Mason, Peter Elving Anderson-Sprecher
  • Publication number: 20160207199
    Abstract: Methods and systems for determining and presenting virtual safety cages are provided. An example method may involve receiving an instruction for a robotic device to perform a physical action in a physical environment occupied by the robotic device. The method may also involve, responsive to receiving the instruction, and based on one or more parameters of one or more physical components of the robotic device, determining one or more estimated trajectories along which the one or more physical components of the robotic device are estimated to move as the robotic device performs the physical action. The method may further involve, based on the one or more estimated trajectories, determining a virtual representation of a space that the robotic device is estimated to occupy in the physical environment while performing the physical action. The method may then involve providing, into the physical environment, an indication of a location of the space.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 21, 2016
    Inventors: James J. Kuffner, JR., Peter Elving Anderson-Sprecher
  • Patent number: 9283678
    Abstract: Methods and systems for determining and presenting virtual safety cages are provided. An example method may involve receiving an instruction for a robotic device to perform a physical action in a physical environment occupied by the robotic device. The method may also involve, responsive to receiving the instruction, and based on one or more parameters of one or more physical components of the robotic device, determining one or more estimated trajectories along which the one or more physical components of the robotic device are estimated to move as the robotic device performs the physical action. The method may further involve, based on the one or more estimated trajectories, determining a virtual representation of a space that the robotic device is estimated to occupy in the physical environment while performing the physical action. The method may then involve providing, into the physical environment, an indication of a location of the space.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: March 15, 2016
    Assignee: Google Inc.
    Inventors: James J. Kuffner, Jr., Peter Elving Anderson-Sprecher
  • Publication number: 20160016315
    Abstract: Methods and systems for determining and presenting virtual safety cages are provided. An example method may involve receiving an instruction for a robotic device to perform a physical action in a physical environment occupied by the robotic device. The method may also involve, responsive to receiving the instruction, and based on one or more parameters of one or more physical components of the robotic device, determining one or more estimated trajectories along which the one or more physical components of the robotic device are estimated to move as the robotic device performs the physical action. The method may further involve, based on the one or more estimated trajectories, determining a virtual representation of a space that the robotic device is estimated to occupy in the physical environment while performing the physical action. The method may then involve providing, into the physical environment, an indication of a location of the space.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 21, 2016
    Inventors: James J. Kuffner, JR., Peter Elving Anderson-Sprecher