Patents by Inventor Peter Emery von Behrens

Peter Emery von Behrens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230184140
    Abstract: A thermal energy storage system with fluid flow insulation, the system including heated thermal storage blocks positioned within a housing, and a method for operating the thermal energy storage system, including providing a flow of fluid into the housing, the fluid convectively extracting heat from a top region, a side region and a bottom region of the thermal energy storage system, to generate heated fluid that insulates the thermal storage blocks from the housing and a foundation of the thermal energy storage system.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 15, 2023
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20230184141
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 15, 2023
    Inventors: John Setel O'DONNELL, Peter Emery VON BEHRENS, Chiaki TREYNOR, Jeremy Quentin KELLER, Matthieu JONEMANN, Robert RATZ, Yusef Desjardins FERHANI
  • Publication number: 20230123897
    Abstract: An apparatus includes one or more thermal storage blocks that define a radiation chamber and a fluid flow slot positioned above the radiation chamber to define a fluid pathway in a first direction. The apparatus includes a heater element positioned adjacent to the radiation chamber in a second, different direction, wherein the radiation chamber is open on at least one side to the heater element. The apparatus includes a fluid movement system configured to direct a stream of fluid through the fluid pathway in the first direction.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11619144
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: April 4, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11603776
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: March 14, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11598226
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: March 7, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11585243
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: February 21, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11572809
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: February 7, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11572810
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: February 7, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11572811
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: February 7, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11566541
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: January 31, 2023
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11536163
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: December 27, 2022
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11530626
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: December 20, 2022
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Patent number: 11530625
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: December 20, 2022
    Assignee: Rondo Energy, Inc.
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220341349
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: October 27, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220282638
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: September 8, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220268180
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220268181
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220268179
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani
  • Publication number: 20220259987
    Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 18, 2022
    Inventors: John Setel O'Donnell, Peter Emery von Behrens, Chiaki Treynor, Jeremy Quentin Keller, Matthieu Jonemann, Robert Ratz, Yusef Desjardins Ferhani