Patents by Inventor Peter EXNER

Peter EXNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200369385
    Abstract: Drones are controlled by one or more control devices and comprise a respective camera for image capture. The one or more control devices perform a method including obtaining projected flight paths of the drones, obtaining a projected camera setting of the respective camera, computing, as a function of the projected camera setting, a projected viewing frustum of the respective camera, defining, for the drones, projected time-space trajectories of no-fly zones based on the projected viewing frustum of the respective camera, analyzing the projected flight paths of the drones in relation to the projected time-space trajectories for detection of a violation of one or more of the no-fly zones, and setting an operative flight path and/or an operative camera setting for at least one selected drone to prevent the violation.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 26, 2020
    Inventors: Ola THÖRN, Peter EXNER
  • Publication number: 20200338392
    Abstract: A control device operates a drone with an onboard camera. The control device obtains a current performance metric to be computed for an activity performed by an individual, determines, based on a positioning rule associated with the current performance metric, a selected relative position, SRP, between the individual and the onboard camera, identifies a reference plane of the individual, operates the drone to move the onboard camera from an initial relative position to attain the SRP in relation to the reference plane; operates the onboard camera, when in the SRP, to capture image(s) of the individual, and provides the image(s) for computation of the current performance metric for the activity performed by the individual. The SRP may be defined, by the positioning rule, to ensure that the orientation of the individual in the image(s) is relevant or optimal for the current performance metric.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 29, 2020
    Inventors: Ola THÖRN, Peter EXNER
  • Publication number: 20200311577
    Abstract: A method for monitoring a primary variable is carried out in a device having access to a set of sensors. The method includes the steps of receiving, from a network service, a series of forecasted values for the primary variable, each forecasted value being associated with one of a series of future time points; for at least one of the future time points, predicting a value for the primary variable using data of at least one secondary variable captured by a subset of the set of sensors, comparing the predicted value to the forecasted value associated with the future time point, and switching to a different subset of the set of sensors, if the predicted value deviates from the forecasted value with more than a specified threshold value.
    Type: Application
    Filed: March 20, 2020
    Publication date: October 1, 2020
    Inventors: Peter Exner, Anders Isberg
  • Publication number: 20200204945
    Abstract: The present disclosure provides a method, performed at an electronic device, for determining a geofence parameter of a geofence area related to a point of interest, POI. The method comprises obtaining a location of the POI, obtaining first POI data based on the location of the POI. The method may comprise determining, based on the location of the POI, one or more entities in proximity of the POI. The method comprises obtaining second POI data related to at least one entity of the one or more entities. The method comprises generating a set of enclosing features related to the POI based on the second POI data, wherein generating the set of enclosing features comprises applying a processing scheme to the second POI data; and determining a geofence parameter based on the first POI data and the set of enclosing features.
    Type: Application
    Filed: November 16, 2019
    Publication date: June 25, 2020
    Inventors: Peter EXNER, Magnus JOHANSSON
  • Publication number: 20200143321
    Abstract: Provided are devices, methods, and computer readable products for adjusting an estimated time of arrival for an object to arrive at a destination. Example aspects provide a method that includes determining the object is at an intermediate waypoint; determining place data related to a place that is proximate to the intermediate waypoint; calculating an adjustment based on the place data related to the place that is proximate to the intermediate waypoint; and adjusting the estimated time of arrival for the object based on the adjustment.
    Type: Application
    Filed: October 4, 2019
    Publication date: May 7, 2020
    Inventors: Peter Exner, Magnus Johansson
  • Publication number: 20200017103
    Abstract: A method for tracking an object in a transportation system is described. The method includes determining, at a first time, a first location of the object based on a positioning system. A first area includes the first location. The method includes determining, based on a movement sensor, that the object is moving. The movement sensor determines that the object is moving at a second time that is after the first time. The method includes determining, at a third time that is after the second time, based on the positioning system, a second location of the object, and setting the moving time of the object to be the second time, responsive to determining that the object has moved to the second location that is in a second area that is different from the first area. Related systems, devices and computer program products are also described.
    Type: Application
    Filed: June 11, 2019
    Publication date: January 16, 2020
    Inventors: Magnus TILLGREN, Peter EXNER, Magnus JOHANSSON