Patents by Inventor Peter F. Scholl

Peter F. Scholl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7270948
    Abstract: Mass spectrometric techniques are provided for detecting the presence of parasites that accumulate unbound heme in red blood cells (including malaria parasites), based on the discovery that unbound heme can be detected and quantified using mass spectrometry. In one aspect of the invention, the method includes the steps of: obtaining a blood sample from the animal; preparing a test sample on a support from the blood sample, and inserting the support into a mass spectrometer for analysis. Next one obtains a mass spectrum of the test sample and determines whether the mass spectrum contains a mass/charge signature of unbound heme. If it is determined that the mass spectrum of the test sample shows the mass/charge signature of unbound heme, the animal is diagnosed as infected with malaria parasites.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: September 18, 2007
    Assignee: The Johns Hopkins University
    Inventors: Plamen A. Demirev, Andrew B. Feldman, Darin Kongkasuriyachai, Nirbhay Kumar, Peter F. Scholl, David J. Sullivan, Jr.
  • Patent number: 7125437
    Abstract: A method and apparatus for particle collection (30) that is characterized by co-aerosolizing fluids (62) into an air stream (34) containing the particles to be analyzed to significantly enhance their collection and identification efficiency is provided.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: October 24, 2006
    Assignee: The Johns Hopkins University
    Inventors: Wayne A. Bryden, Peter F. Scholl, Micah A. Carlson, Michael P. McLoughlin
  • Patent number: 7109038
    Abstract: Methods are described for detecting and quantifying occult blood in a biological sample using laser desorption mass spectrometry (LD MS). Biological samples that can be analyzed using various embodiments of the present invention include stool (fecal occult blood, FOB), and any bodily fluid including urine, cerebrospinal fluid and other bodily fluids. If the heme or heme metabolite is bound to protein, the sample is treated with acid before analysis to release the porphyrin. Some of the methods use LD MS with a time of flight analyzer (TOF) to detect and measure unbound heme, other hemoglobin metabolites and other molecules that have a porphyrin-based structure, e.g., bilirubin, biliverdin, protoporphyrin IX, and Zinc protoporphyrin in the biological sample. In other methods, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is used to detect and quantify the individual ?- and ?-polypeptide chains of hemoglobin.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: September 19, 2006
    Assignee: The Johns Hopkins University
    Inventors: Peter F. Scholl, Plamen Demirev, Andrew B. Feldman
  • Publication number: 20040241677
    Abstract: Techniques for automatically analyzing a biological sample with a microscope include obtaining a first digital image of a first field of view of the biological sample. Cell data and anomalous data are automatically determined. Cell data indicates an area co-located in the first digital image with a cell set of one or more cells of a particular type. Anomalous data indicates an area co-located in the first digital image with an anomalous set of zero or more particular objects that are anomalous to normal cells of the particular type. The cell data and the anomalous data are automatically combined to determine the particular objects inside the cell set in the first digital image. An analytical result for the biological sample is generated based on the particular objects inside the cell set. These techniques allow the automated classification and quantification of malaria in microscope views of blood smears, among other diseases.
    Type: Application
    Filed: November 13, 2003
    Publication date: December 2, 2004
    Inventors: Jeffrey S Lin, Andrew B Feldman, Plamen A Demirev, Peter F Scholl, Sean P Murphy
  • Patent number: 6806465
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: October 19, 2004
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, Peter F. Scholl, Ronald G. Chappell, Wayne A. Bryden, Harvey W. Ko, Scott A. Ecelberger
  • Patent number: 6805789
    Abstract: Provided are methods of producing an electrode capable of binding an analyte thereto comprising: providing a substrate capable of binding a dithiol molecule thereto; electrochemically treating the substrate using cyclic voltammetry to provide a treated substrate having a fractal dimension of greater than about 2; and contacting the treated substrate with dithiol molecules to produce an electrode having dithiol groups attached thereto and capable of binding an analyte to be detected thereto. Also provided are methods of accumulating and detecting analytes using the electrodes produced via the methods of the present invention.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: October 19, 2004
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Peter F. Scholl, Plamen A. Demirev, Andrew B. Feldman
  • Publication number: 20040099536
    Abstract: Provided are methods of producing an electrode capable of binding an analyte thereto comprising: providing a substrate capable of binding a dithiol molecule thereto; electrochemically treating the substrate using cyclic voltammetry to provide a treated substrate having a fractal dimension of greater than about 2; and contacting the treated substrate with dithiol molecules to produce an electrode having dithiol groups attached thereto and capable of binding an analyte to be detected thereto. Also provided are methods of accumulating and detecting analytes using the electrodes produced via the methods of the present invention.
    Type: Application
    Filed: August 14, 2003
    Publication date: May 27, 2004
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Peter F. Scholl, Plamen A. Demirev, Andrew B. Feldman
  • Publication number: 20040099531
    Abstract: The present invention concerns a sensor array and related testing apparatus for rapidly detecting the presence and/or concentration of constituents in samples, particularly biological molecules in fluid samples, including associated testing methods. The invention can be adapted such that a plurality of the sensors each detect a different constituent so that the invention can rapidly detect multiple constituents in a single sample. The sensors may be arranged in an array and connected by a plurality of micro channels that are fed from a main channel into which the sample is introduced. Positive pressure can be applied to the main and micro channels by a micro-pump. Alternately, it can be adapted to detect one or more constituents in a plurality of separate samples. A plurality of sensors are provided, each comprising electrochemical cells comprising an anode, a cathode and a reference electrode separated from each other by one or more filters within which an electrolyte is suspended.
    Type: Application
    Filed: August 14, 2003
    Publication date: May 27, 2004
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Andrew B. Feldman, Plamen Demirev, Peter F. Scholl
  • Publication number: 20030232446
    Abstract: Methods are described for detecting and quantifying occult blood in a biological sample using laser desorption mass spectrometry (LD MS). Biological samples that can be analyzed using various embodiments of the present invention include stool (fecal occult blood, FOB), and any bodily fluid including urine, cerebrospinal fluid and other bodily fluids. If the heme or heme metabolite is bound to protein, the sample is treated with acid before analysis to release the porphyrin. Some of the methods use LD MS with a time of flight analyzer (TOF) to detect and measure unbound heme, other hemoglobin metabolites and other molecules that have a porphyrin-based structure, e.g., bilirubin, biliverdin, protoporphyrin IX, and Zinc protoporphyrin in the biological sample. In other methods, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is used to detect and quantify the individual &agr;- and &bgr;-polypeptide chains of hemoglobin.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 18, 2003
    Inventors: Peter F. Scholl, Plamen Demirev, Andrew B. Feldman
  • Publication number: 20030020011
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Application
    Filed: January 15, 2002
    Publication date: January 30, 2003
    Inventors: Charles W. Anderson, Peter F. Scholl, Ronald G. Chappell, Wayne A. Bryden, Harvey W. Ko, Scott A. Ecelberger