Patents by Inventor Peter Goodwin

Peter Goodwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10078269
    Abstract: System and method for accurately measuring alignment of every exposure field on a pre-patterned wafer without reducing wafer-exposure throughput. Diffraction grating disposed in scribe-lines of such wafer, used as alignment marks, and array of encoder-heads (each of which is configured to define positional phase(s) of at least one such alignment mark) are used. Determination of trajectory of a wafer-stage scanning during the wafer-exposure in the exposure tool employs determining in-plane coordinates of such spatially-periodic alignment marks by simultaneously measuring position-dependent phases of signals produced by these marks as a result of recombination of light corresponding to different diffraction orders produced by these marks.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: September 18, 2018
    Assignee: NIKON CORPORATION
    Inventors: Eric Peter Goodwin, Michael B. Binnard, Ruslan Kurdyumov
  • Publication number: 20180231899
    Abstract: Fringe-projection autofocus system devoid of a reference mirror. Contributions to error in determination of a target surface profile caused by air non-uniformities are measured based on multiple measurements of the target surface performed at different wavelengths, and/or angles of incidence, and/or grating pitches and subtracted from the measured profile, rendering the system substantially insensitive to presence of air turbulence. Same optical beams forming a fringe irradiance pattern on target surface are used for measurement of the surface profile and reduction of measurement error by the amount attributed to air turbulence.
    Type: Application
    Filed: April 6, 2018
    Publication date: August 16, 2018
    Inventors: Eric Peter Goodwin, Daniel Gene Smith
  • Publication number: 20180181006
    Abstract: An encoder head configured for use with a lithographic exposure tool. The head is devoid of the multiplicity of optical corner-cubes and includes, instead, a single, geometrically substantially perfect cuboid of optically-isotropic material complemented, in operation, with a birefringent lens to form a contraption that, as a unit, splits a single beam of light delivered to the contraption into four measurement (sub-)beams of light (two in xz-plane, two in yz-plane) and causes each of measurement sub-beams to interact with the wafer-stage diffraction grating at the same location twice: upon the first pass by the grating and upon the second pass by the grating.
    Type: Application
    Filed: February 6, 2018
    Publication date: June 28, 2018
    Inventor: Eric Peter Goodwin
  • Publication number: 20180172437
    Abstract: System and method for monitoring of performance of a mirror array of a digital scanner with a use of a lateral shearing interferometer (operated in either static or a phase-shifting condition) to either simply identify problematic pixels for further troubleshooting or measure the exact magnitude of the mirror's deformation.
    Type: Application
    Filed: February 15, 2018
    Publication date: June 21, 2018
    Inventor: Eric Peter Goodwin
  • Patent number: 9977343
    Abstract: Fringe-projection autofocus system devoid of a reference mirror. Contributions to error in determination of a target surface profile caused by air non-uniformities measured based on multiple measurements of the target surface performed at different wavelengths, and/or angles of incidence, and/or grating pitches and subtracted from the measured profile, rendering the system substantially insensitive to presence of air turbulence. Same optical beams forming a fringe irradiance pattern on target surface are used for measurement of the surface profile and reduction of measurement error by the amount attributed to air turbulence.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: May 22, 2018
    Assignee: NIKON CORPORATION
    Inventors: Eric Peter Goodwin, Daniel Gene Smith
  • Publication number: 20180128653
    Abstract: An encoder head configured for use with a lithographic exposure tool. The head is devoid of a multiplicity of stand-alone optical retroreflectors.
    Type: Application
    Filed: January 10, 2018
    Publication date: May 10, 2018
    Inventor: Eric Peter Goodwin
  • Publication number: 20180061627
    Abstract: An encoder head configured for use with a lithographic exposure tool.
    Type: Application
    Filed: November 1, 2017
    Publication date: March 1, 2018
    Inventor: Eric Peter Goodwin
  • Publication number: 20180038682
    Abstract: Prediction of a distribution of light in an illumination pupil of an illumination system includes identifying component(s) of the illumination system the adjustment of which affects this distribution and simulating the distribution based on a point spread function defined in part by the identified components. The point spread function has functional relationship with configurable setting of the illumination settings.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Inventors: Daniel Gene Smith, Eric Peter Goodwin
  • Publication number: 20180031368
    Abstract: New and useful concepts for an autofocus system and method are provided. A basic concept uses fringe projection in an autofocus system and method. A further aspect provides spatial filtering concepts for the fringe projection concept. In yet another aspect, the fringe projection autofocus system and method is provided with temporal phase shifting using no moving parts. In a still further aspect, the fringe projection autofocus system and method is provided with unambiguous height measurement concepts.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 1, 2018
    Inventors: Daniel Gene Smith, Eric Peter Goodwin
  • Publication number: 20180003484
    Abstract: System and method for profiling of a surface with lateral scanning interferometer the optical axis of which is perpendicular to the surface. In-plane scanning of the surface is carried out with increments that correspond to integer number of pixels of an employed optical detector. Determination of height profile of a region-of-interest that is incomparably larger than a FOV of the interferometer objective is performed in time reduced by at least an order of magnitude as compared to time required for the same determination by a vertical scanning interferometer.
    Type: Application
    Filed: June 26, 2017
    Publication date: January 4, 2018
    Inventor: Eric Peter Goodwin
  • Patent number: 9816805
    Abstract: Method of predicting a distribution of light in an illumination pupil of an illumination system includes identifying component(s) of the illumination system the adjustment of which affects this distribution and simulating the distribution based on a point spread function defined in part by the identified components. The point spread function has functional relationship with configurable setting of the illumination settings.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: November 14, 2017
    Assignee: NIKON CORPORATION
    Inventors: Daniel Gene Smith, Eric Peter Goodwin
  • Patent number: 9810530
    Abstract: Autofocus system (AF) employing, in addition to specified optical units, fringe projection and fringe detection systems (FPS, FDS) and specifically-configured data processing system. AFS is configured to project with FPS a sinusoidal fringe pattern, formed by a pattern source, on a substrate and to image the so projected pattern from substrate onto optical detector with FDS to form optical image from which topology of the substrate is defined as substrate moves relative to the projected pattern. Pattern source may include diffraction grating oriented that the projected pattern is inclined relative to direction of substrate scanning Topology profile is corrected for tilt of substrate, Goos-Hanchen errors, and for fringe-pattern-induced errors outside a chosen spatial-frequency range. To reduce errors of topology profile, at least five values of phase difference are used. AFS is configured to define temporal phase shifting in optical image without using any moving parts in the AFS.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: November 7, 2017
    Assignee: NIKON CORPORATION
    Inventors: Daniel Gene Smith, Eric Peter Goodwin
  • Publication number: 20170292860
    Abstract: An optical system configured as part of optical metrology unit used to assess the operational status of a workpiece and, in a specific case, configured as an encoder head of a lithographic exposure tool. The optical system is devoid of a stand-alone optical corner-cubes and includes, instead, a single, imperfect or frustrated cuboid of optically-isotropic material that, in operation with the diffraction grating of the workpiece, simultaneously forms four interferometric signals for measuring x-, y, and z-positions of the workpiece grating relative to the optical system. Proposed system and method solve problems of (i) structural complexity of a conventional metrology unit for use in an exposure tool, (ii) burdensome alignment of the multitude of optical prisms in the process of forming such metrology unit, and (iii) cyclic non-linear errors associated with measurements involving conventional corner-cubes-based metrology units.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 12, 2017
    Inventors: Eric Peter Goodwin, Zhiqiang Liu, Yuki Terui
  • Publication number: 20170168143
    Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Applicants: Nikon Corporation, Nikon Metrology NV
    Inventors: Mina A. Rezk, Anthony R. Slotwinski, Daniel G. Smith, Eric Peter Goodwin, Alexander Cooper, Thomas M. Hedges
  • Patent number: 9638799
    Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 2, 2017
    Assignees: Nikon Corporation, Nikon Metrology NV
    Inventors: Eric Peter Goodwin, Daniel G. Smith, Alexander Cooper, Mina A. Rezk, Anthony R. Slotwinski, Thomas M. Hedges
  • Patent number: 9625368
    Abstract: An optical assembly for a system for inspecting or measuring of an object is provided that is configured to move as a unit with a system, as the system is pointed at a target, and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the system. The optical assembly comprises catadioptric optics configured to fold the optical path of the pointing beam and measurement beam that are being directed through the outlet of the system, to compress the size of the optical assembly.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: April 18, 2017
    Assignee: Nikon Corporation
    Inventors: Eric Peter Goodwin, David Michael Williamson, Daniel Gene Smith, Michel Pharand, Alexander Cooper, Alec Robertson, Brian L. Stamper
  • Patent number: 9618619
    Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 11, 2017
    Assignees: Nikon Corporation, Nikon Metrology NV
    Inventors: Mina A. Rezk, Anthony R. Slotwinski, Daniel G. Smith, Eric Peter Goodwin, Alexander Cooper, Thomas M. Hedges
  • Publication number: 20170097574
    Abstract: System and method for accurately measuring alignment of every exposure field on a pre-patterned wafer without reducing wafer-exposure throughput. Diffraction grating disposed in scribe-lines of such wafer, used as alignment marks, and array of encoder-heads (each of which is configured to define positional phase(s) of at least one such alignment mark) are used. Determination of trajectory of a wafer-stage scanning during the wafer-exposure in the exposure tool employs determining in-plane coordinates of such spatially-periodic alignment marks by simultaneously measuring position-dependent phases of signals produced by these marks as a result of recombination of light corresponding to different diffraction orders produced by these marks.
    Type: Application
    Filed: October 3, 2016
    Publication date: April 6, 2017
    Inventors: ERIC PETER GOODWIN, MICHAEL B. BINNARD, Ruslan Kurdyumov
  • Patent number: 9605948
    Abstract: Methodology of measuring a position of a wafer with an encoder directing measurement beam(s) of light towards a wafer area that is being contemporaneously patterned in an exposure apparatus. The Abbe error of such measurement is minimized or even negated by combining the data from first and second measurement signals, one of which is defined as complementary, Abbe-error correcting measurement signal for which the induced Abbe error is either opposite to or at least different from the Abbe error corresponding to another, main measurement signal. The combination of the main and Abbe-error correcting signals is performed with a heterodyne interferometer employing a two-dimensional diffraction grating diffracting each of the measurement beams twice.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: March 28, 2017
    Assignee: Nikon Corporation
    Inventors: Eric Peter Goodwin, Zhiqiang Liu
  • Publication number: 20170076439
    Abstract: A measuring device (233) for monitoring movement of a first object relative to a second object, the first object or the second object including a target surface (13), comprises a first image sensor combination (236), a second image sensor combination (237), and a control system (20A). The image sensor combinations (236, 237) capture first images and second images of the target surface (13) over time. The first image sensor combination (236) includes a first image sensor (236A) and a first lens assembly (236B). The second image sensor combination (237) includes a second image sensor (237A), and a second lens assembly (237B) having a second optical axis (237BX) that is at an angle of between thirty degrees and sixty degrees relative to normal to the target surface (13). The control system (20A) analyzes the first images and the second images to monitor movement of the first object relative to the second object.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 16, 2017
    Inventors: Jonathan K. Wells, Matthew D. Rosa, Paul Derek Coon, Eric Peter Goodwin