Patents by Inventor Peter Griffin Smith, JR.

Peter Griffin Smith, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8739869
    Abstract: Methods for enhanced oil recovery from a subterranean formation including adding a first salt to a first aqueous stream to form a first injection stream with an increased concentration of a first ion. A second salt is added to a second aqueous stream to form a second injection stream with an increased concentration of a second ion. The second injection stream is of different composition than the first injection stream and the first injection stream and the second injection stream have substantially the same interfacial tension with a hydrocarbon and substantially the same kinematic viscosity. The first injection stream is injected into the formation at a first time and the second injection stream is injected into the formation at a second time. The first injection stream and second injection stream contact at least some overlapping portion of the formation. Oil is recovered from the overlapping portion of the formation.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: June 3, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas W Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, Jr., Jung-gi Jane Shyeh, Robert D. Kaminsky
  • Patent number: 8657000
    Abstract: Methods and systems for enhancing oil recovery from a subterranean formation comprising at least a first region and a second region are provided. An exemplary method includes creating an injection stream by adding a salt to a water stream to increase a concentration of an ion and injecting the injection stream into the subterranean formation through a first injection well in the first region of the subterranean formation. Fluid is produced from the subterranean formation and separated to generate an aqueous stream comprising at least a portion of the ion. The salt is added to the aqueous stream to adjust the concentration of the ion in the aqueous stream to a desired level. The aqueous stream is injected into the subterranean formation through a second injection well in the second region of the subterranean formation.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas W Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, Jr.
  • Patent number: 8656996
    Abstract: Methods and systems for enhanced oil recovery from a subterranean formation are provided. An exemplary includes separating fluid produced from the subterranean formation into a first fluid stream that includes an aqueous stream containing multivalent ions. At least a portion of the multivalent ions in the first fluid are removed to form a second fluid stream and the second fluid stream is injected into the subterranean formation. The first fluid stream and the second fluid stream have substantially the same interfacial tension with a hydrocarbon and substantially the same kinematic viscosity, and the second fluid stream has a total concentration of ions greater than about 100,000 ppm.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas W Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, Jr., Jung-gi Jane Shyeh
  • Publication number: 20130211807
    Abstract: Systems and methods for fracturing a formation are provided. A method includes generating a subsurface model including the production formation and a zone proximate to the production formation. A number of scenarios are simulated in which a volumetric change is created in the zone proximate to the production formation. A scenario is selected from the plurality of scenarios to stimulate the production formation. The scenario is performed to create a fracture field in the production formation.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 15, 2013
    Inventors: Elizabeth Land Templeton-Barrett, Xianyun Wu, Michael S. Chelf, Brian R. Crawford, Bruce A. Dale, Yueming Liang, Kevin H. Searles, Peter Griffin Smith, JR., Marshall I. Sundberg
  • Publication number: 20130199789
    Abstract: Systems and methods are described for fracturing a production formation. A method includes drilling a well into a zone proximate to a production formation, and increasing a volume of the zone through the well in order to apply a mechanical stress to the production formation.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 8, 2013
    Inventors: Yueming Liang, Michael S. Chelf, Brian R. Crawford, Bruce A. Dale, Elizabeth Land Templeton-Barrett, Peter Griffin Smith, JR., Kevin H. Searles, Marshall I. Sundberg, Xianyun Wu
  • Publication number: 20120125603
    Abstract: Methods for enhanced oil recovery from a subterranean formation including adding a first salt to a first aqueous stream to form a first injection stream with an increased concentration of a first ion. A second salt is added to a second aqueous stream to form a second injection stream with an increased concentration of a second ion. The second injection stream is of different composition than the first injection stream and the first injection stream and the second injection stream have substantially the same interfacial tension with a hydrocarbon and substantially the same kinematic viscosity. The first injection stream is injected into the formation at a first time and the second injection stream is injected into the formation at a second time. The first injection stream and second injection stream contact at least some overlapping portion of the formation. Oil is recovered from the overlapping portion of the formation.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 24, 2012
    Inventors: Thomas W. Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, JR., Jung-gi Jane Shyeh, Robert D. Kaminsky
  • Publication number: 20120125604
    Abstract: Methods and systems for enhancing oil recovery from a subterranean formation comprising at least a first region and a second region are provided. An exemplary method includes creating an injection stream by adding a salt to a water stream to increase a concentration of an ion and injecting the injection stream into the subterranean formation through a first injection well in the first region of the subterranean formation. Fluid is produced from the subterranean formation and separated to generate an aqueous stream comprising at least a portion of the ion. The salt is added to the aqueous stream to adjust the concentration of the ion in the aqueous stream to a desired level. The aqueous stream is injected into the subterranean formation through a second injection well in the second region of the subterranean formation.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 24, 2012
    Inventors: Thomas W. Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, JR.
  • Publication number: 20120125605
    Abstract: Methods and systems for enhanced oil recovery from a subterranean formation are provided. An exemplary includes separating fluid produced from the subterranean formation into a first fluid stream that includes an aqueous stream containing multivalent ions. At least a portion of the multivalent ions in the first fluid are removed to form a second fluid stream and the second fluid stream is injected into the subterranean formation. The first fluid stream and the second fluid stream have substantially the same interfacial tension with a hydrocarbon and substantially the same kinematic viscosity, and the second fluid stream has a total concentration of ions greater than about 100,000 ppm.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 24, 2012
    Inventors: Thomas W. Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, JR., Jung-gi Jane Shyeh