Patents by Inventor Peter H. Fisher

Peter H. Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11685270
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: June 27, 2023
    Assignee: MIT
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20210078418
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 18, 2021
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20190123586
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: September 21, 2018
    Publication date: April 25, 2019
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 10097044
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: October 9, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 9509147
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 29, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20160301265
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 13, 2016
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 9450422
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: September 20, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 9444265
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: September 13, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20150194818
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: March 24, 2015
    Publication date: July 9, 2015
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20120248884
    Abstract: Described herein are embodiments of a wireless power receiver that includes a receive high-Q resonator configured to receive wireless power from a magnetic near field, the receive high-Q resonator that may include a first resonator and a second resonator wirelessly coupled to the first resonator. The wireless power receiver may be included in a non-contact power transmission apparatus that includes a resonance system, which may include a primary coil to which an oscillating voltage from a source is applied, a primary-side resonance coil, a secondary-side resonance coil, and a secondary coil to which a load is connected, wherein the impedance of the primary coil is set such that the output impedance of the oscillating source and the input impedance of the resonance system are matched to each other.
    Type: Application
    Filed: May 6, 2011
    Publication date: October 4, 2012
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20120228960
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 13, 2012
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 8097983
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: January 17, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Aristeidis Karalis, Andre B Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20110241618
    Abstract: In embodiments of the present invention improved capabilities are described for methods and systems for wireless power transmission utilizing high-Q resonators, where the resonators may resonate with an unmodulated carrier frequency, may be formed in a loop of conducting ribbon, may include an efficiency monitor, may provide for varying the amount of power transferred wirelessly, and applies a magnetic resonance phenomenon between a source and destination side resonator.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 6, 2011
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20110227530
    Abstract: Described herein are embodiments of a portable wireless power charger that includes a charging region including a high-Q source magnetic resonator configured to generate a magnetic near-field for coupling of wireless power to a wireless powered device including a high-Q receiver magnetic resonator, the high-Q source magnetic resonator substantially disposed around a perimeter of the charging region, and a cable for feeding input power to the high-Q source magnetic resonator.
    Type: Application
    Filed: May 26, 2011
    Publication date: September 22, 2011
    Inventors: ARISTEIDIS KARALIS, ANDRE B. KURS, ROBERT MOFFATT, JOHN D. JOANNOPOULOS, PETER H. FISHER, MARIN SOLJACIC
  • Publication number: 20110227528
    Abstract: Described herein are embodiments of a transmitter system for wireless power that may include a high-Q resonator that may include an inductive element and a capacitor that are collectively magnetically resonant at a first frequency, and a coupling loop assembly, that may include a first coupling loop part adjustably connected to said high-Q resonator. Another embodiment of the transmitter system for wireless power may include a first high-Q magnetic resonator that may include an inductive element and a capacitor that are collectively magnetically resonant at a first frequency, said first high-Q magnetic resonator positioned for wirelessly supplying power to devices on the ground.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 22, 2011
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20110221278
    Abstract: Described herein are embodiments of a power supply system that includes a power supply coil and a power supply-side resonance coil that are provided at a facility, a power receiving coil and a power receiving-side resonance coil that are provided for a mobile unit, a power supply-side information exchange unit, a power receiving-side information exchange unit, and an adjustment unit that adjusts a relative position of the power supply coil with respect to the power supply-side resonance coil and a relative position of the power receiving coil with respect to the power receiving-side resonance coil on the basis of the information exchanged by the information exchange units.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20110198939
    Abstract: Described herein are embodiments of a transmitter that includes a substantially two-dimensional high-Q resonator structure including a flat coil; and an impedance-matching structure operably connected to the resonator structure, the transmitter configured to transmit power wirelessly to another high-Q resonator.
    Type: Application
    Filed: March 4, 2011
    Publication date: August 18, 2011
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20110193419
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 11, 2011
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20110181122
    Abstract: Described herein are embodiments of a transmitter that includes a modulation circuit configured to modulate a power carrier signal with an information signal to form a modulated signal; and a high-Q resonator configured to couple with a high-Q resonator of a receiver, wherein the resonator is configured to transmit the modulated signal wirelessly to the resonator of the receiver.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 28, 2011
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20110169339
    Abstract: Described herein are embodiments of a method of determining information regarding power delivered to a high-Q resonator for a planar wireless power transfer system that includes delivering power to a high-Q resonator, measuring a voltage across a capacitor in said high-Q resonator and determining information regarding power delivered to said high-Q resonator.
    Type: Application
    Filed: March 18, 2011
    Publication date: July 14, 2011
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic