Patents by Inventor Peter Heist

Peter Heist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020057724
    Abstract: A method is provided for determining the status of a gas mixture of a laser system including a gas discharge laser which generates an output beam and has a discharge chamber containing a gas mixture within which energy is supplied to the gas mixture by a power supply via application of a driving voltage to a discharge circuit. A master data set of an output parameter such as any of output beam energy, bandwidth, spectrum width, long axial beam profile, short axial beam profile, beam divergence, energy stability, energy efficiency, width of the discharge, temporal beam coherence, spatial beam coherence, spatial pulse width, amplified spontaneous emission and temporal pulse width versus an input parameter such as driving voltage is generated corresponding to an optimal gas mixture status, preferably after a new fill and typically at the factory, and alternatively following a new fill at the fab.
    Type: Application
    Filed: October 18, 2001
    Publication date: May 16, 2002
    Applicant: Lamda Physik AG
    Inventors: Klaus Wolfgang Vogler, Peter Heist
  • Publication number: 20020041616
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: April 11, 2002
    Applicant: Lambda Physik AG.
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Publication number: 20020034206
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: March 21, 2002
    Applicant: Lambda Physik AG.
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Publication number: 20020031157
    Abstract: An excimer or molecular fluorine laser system includes a discharge chamber containing a gas mixture, multiple electrodes connected to a power supply circuit for energizing the gas mixture, a resonator for generating a laser beam, a processor, and means for monitoring an amplified spontaneous emission (ASE) signal of the laser, such as preferably an ASE detector. The processor receives a signal from the preferred ASE detector indicative of the ASE signal of the laser. Based on the signal from the ASE detector, the processor determines whether to initiate a responsive action for adjusting a parameter of the laser system.
    Type: Application
    Filed: April 24, 2001
    Publication date: March 14, 2002
    Applicant: Lambda Physik AG
    Inventors: Peter Heist, Matthias Kramer, Juergen Kleinschmidt, Sergei Govorkov, Marcus Serwazi, Thomas Junemann
  • Publication number: 20020031161
    Abstract: An apparatus and method are provided for bandwidth narrowing of an excimer laser to &Dgr;&lgr;≈6 pm or less with high spectral purity and minimized output power loss. Output stability with respect to pulse energy, beam pointing, beam size and beam output location is also provided. The excimer laser includes an active laser medium for generating a spectral beam at an original wavelength, means for selecting and narrowing the broadband output spectrum of the excimer laser, a resonator having at least one highly reflecting surface, and an output coupler. Means for adapting a divergence of the resonating band within the resonator is further included in the apparatus of the invention. The divergence adapting causes the spectral purity to improve by between 20% and 50% and the output power to reduce by less than 10%. A method according to the invention includes selecting and aligning the divergence adapting means.
    Type: Application
    Filed: August 6, 2001
    Publication date: March 14, 2002
    Applicant: Lambda Physik AG
    Inventors: Hans-Stephan Albrecht, Peter Heist, Klaus Wolfgang Vogler
  • Publication number: 20020015432
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 7, 2002
    Applicant: Lambda Physik AG
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Publication number: 20020015431
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 7, 2002
    Applicant: Lambda Physik AG
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Patent number: 6345065
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: February 5, 2002
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Görtler
  • Patent number: 6330267
    Abstract: A method is provided for determining the status of a gas mixture of a laser system including a gas discharge laser which generates an output beam and has a discharge chamber containing a gas mixture within which energy is supplied to the gas mixture by a power supply via application of a driving voltage to a discharge circuit. A master data set of an output parameter such as any of output beam energy, bandwidth, spectrum width, long axial beam profile, short axial beam profile, beam divergence, energy stability, energy efficiency, width of the discharge, temporal beam coherence, spatial beam coherence, spatial pulse width, amplified spontaneous emission and temporal pulse width versus an input parameter such as driving voltage is generated corresponding to an optimal gas mixture status, preferably after a new fill and typically at the factory, and alternatively following a new fill at the fab.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: December 11, 2001
    Assignee: Lambda Physik AG
    Inventors: Klaus Wolfgang Vogler, Peter Heist
  • Publication number: 20010028669
    Abstract: A line-narrowed excimer or molecular fluorine laser system includes a gain medium surrounded by a resonator for generating a laser beam, a discharge circuit including a plurality of electrodes for energizing the gain medium and a line-narrowing unit within the resonator for narrowing the bandwidth of the laser system. The resonator includes a deformable resonator reflector. A technique for adjusting the bandwidth of the laser system includes adjusting a surface contour of the deformable resonator reflector. A desired bandwidth may be selected manually or using a processor which automatically controls the surface contour adjustment.
    Type: Application
    Filed: February 1, 2001
    Publication date: October 11, 2001
    Inventors: Peter Heist, Jurgen Kleinschmidt
  • Patent number: 6298080
    Abstract: A line-narrowed excimer or molecular fluorine laser system includes a gain medium surrounded by a resonator for generating a laser beam, a discharge circuit including a plurality of electrodes for energizing the gain medium and a line-narrowing unit within the resonator for narrowing the bandwidth of the laser system. The resonator includes a deformable resonator reflector. A technique for adjusting the bandwidth of the laser system includes adjusting a surface contour of the deformable resonator reflector. A desired bandwidth may be selected manually or using a processor which automatically controls the surface contour adjustment.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: October 2, 2001
    Assignee: Lambda Physik AG
    Inventors: Peter Heist, Jürgen Kleinschmidt
  • Patent number: 6285701
    Abstract: An apparatus and method are provided for bandwidth narrowing of an excimer laser to &Dgr;&lgr;≈6 pm or less with high spectral purity and minimized output power loss. Output stability with respect to pulse energy, beam pointing, beam size and beam output location is also provided. The excimer laser includes an active laser medium for generating a spectral beam at an original wavelength, means for selecting and narrowing the broadband output spectrum of the excimer laser, a resonator having at least one highly reflecting surface, and an output coupler. Means for adapting a divergence of the resonating band within the resonator is further included in the apparatus of the invention. The divergence adapting causes the spectral purity to improve by between 20% and 50% and the output power to reduce by less than 10%. A method according to the invention includes selecting and aligning the divergence adapting means.
    Type: Grant
    Filed: August 6, 1998
    Date of Patent: September 4, 2001
    Assignee: Lambda Physik AG
    Inventors: Hans-Stephan Albrecht, Peter Heist, Klaus Wolfgang Volger
  • Publication number: 20010009560
    Abstract: A line-narrowed excimer or molecular fluorine laser system includes a gain medium surrounded by a resonator for generating a laser beam, a discharge circuit including a plurality of electrodes for energizing the gain medium and a line-narrowing unit within the resonator for narrowing the bandwidth of the laser system. The resonator includes a deformable resonator reflector. A technique for adjusting the bandwidth of the laser system includes adjusting a surface contour of the deformable resonator reflector. A desired bandwidth may be selected manually or using a processor which automatically controls the surface contour adjustment.
    Type: Application
    Filed: February 1, 2001
    Publication date: July 26, 2001
    Applicant: Lambda Physik Gesellschaft zur Herstellung von Larsen GmbH
    Inventors: Peter Heist, Jurgen Kleinschmidt
  • Patent number: 6243406
    Abstract: A gas mixture of a gas discharge laser such as an excimer or molecular fluorine laser is stabilized. The gas mixture of the laser includes a constituent halogen containing molecular species such as F2 or HCl which is subject to depletion from an initial optimum concentration. When the gas mixture is energized by a pulsed discharge circuit, the amplified spontaneous emission (ASE) signal is monitored. The status of the gas mixture is determined based on the monitored ASE signal. Stimulated emission is preferably filtered or blocked for more precise ASE signal monitoring. The gas mixture is preferably replenished using small halogen injections, total pressure adjustments and mini and partial gas replacements based on the evolving gas mixture status determined from the monitored ASE signal.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: June 5, 2001
    Inventors: Peter Heist, Matthias Kramer, Jürgen Kleinschmidt, Sergei Govorkov
  • Patent number: 6212214
    Abstract: A method is provided for determining the status of a gas mixture of a laser system including a gas discharge laser which generates an output beam and has a discharge chamber containing a gas mixture within which energy is supplied to the gas mixture by a power supply via application of a driving voltage to a discharge circuit. A master data set of an output parameter such as any of output beam energy, bandwidth, spectrum width, long axial beam profile, short axial beam profile, beam divergence, energy stability, energy efficiency, width of the discharge, temporal beam coherence, spatial beam coherence, spatial pulse width, amplified spontaneous emission and temporal pulse width versus an input parameter such as driving voltage is generated corresponding to an optimal gas mixture status, preferably after a new fill and typically at the factory, and alternatively following a new fill at the fab.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: April 3, 2001
    Assignee: Lambda Physik AG
    Inventors: Klaus Wolfgang Vogler, Peter Heist
  • Patent number: 6160831
    Abstract: An excimer laser system having a precisely calibratable absolute emission wavelength is provided wherein at least one source of reference light is used. The reference light may be a laser such as a HeNe laser or a cathode lamp such as a hollow Pt, As, C, or Fe cathode lamp. The reference light and the excimer laser beam are directed along substantially the same optical path. The beams are broadened and recollimated by beam expanding optics. The broadened beams impinge upon a dispersive element, preferably an echelle grating, and various orders for each incident wavelength are dispersed. The beams are refocused onto a position sensitive detector such as a CCD camera. Different orders of one or more lines of known wavelength of the reference light and a line from the excimer laser emission are also incident at the detector simultaneously.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: December 12, 2000
    Assignee: Lambda Physik GmbH
    Inventors: Jurgen Kleinschmidt, Hans-Stephan Albrecht, Peter Heist
  • Patent number: 5761236
    Abstract: A laser, especially an excimer laser, is designed to generate narrow-band radiation and comprises a laser resonator, including two reflecting elements (12, 14) between which there is disposed a laser active medium (10), and further comprises a group of several refractive dispersive elements (32, 34) arranged in the laser beam path and each deflecting, incident light at an angle (.gamma..sub.a, .gamma..sub.b) which is specific of the wavelength of the incident light. It is provided to reduce variations of the emission wavelength which are temperature responsive and time dependent during burst operation by giving at least one of the refractive dispersive elements (32) a refractive index which increases as the temperature goes up and at least one of these elements (34) a refractive index which drops as the temperature rises.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: June 2, 1998
    Assignee: Lambda Physik Gesellschaft zur Herstellung Von Lasern mbH
    Inventors: Jurgen Kleinschmidt, Peter Heist