Patents by Inventor Peter J. Beemiller

Peter J. Beemiller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230313107
    Abstract: Cartridge for manufacturing a population of cells suitable for formulation as a cellular therapeutic are disclosed herein, along with systems for operating the cartridges and performing methods to generate the population of cells suitable for formulation as a cellular therapeutic. The population of cells suitable for formulation as a cellular therapeutic can be T-cells, including CAR T-cells. The systems and methods can be largely automated.
    Type: Application
    Filed: December 28, 2022
    Publication date: October 5, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Andrew W. McFarland, Peter J. Beemiller, Guido K. Stadler, Alexander J. Mastroianni, Joshua J. Cardiel Rivera, Darcy K. Kelly-Greene, Jonathan Cloud Dragon Hubbard, Natalie C. Marks, Long Van Le, Ke-Chih Lin
  • Patent number: 11666912
    Abstract: Methods of sorting T lymphocytes in a microfluidic device are provided. The methods can include flowing a fluid sample comprising T lymphocytes through a region of a microfluidic device that contains an array of posts. The array of posts can be configured to have a critical size (Dc) that separates activated T lymphocytes from naïve T lymphocytes. Also provided are microfluidic devices having an array of posts configured to separate activated T lymphocytes from naïve T lymphocytes, compositions enriched for T lymphocytes, particularly activated T lymphocytes that are known to be reactive to an antigen of interest, and methods of treating subjects suffering from a pathogenic disorder or cancer by administering such compositions.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 6, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin D. Loutherback, Yelena Bronevetsky, Peter J. Beemiller, Xiaohua Wang, Kevin T. Chapman
  • Publication number: 20230023831
    Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 26, 2023
    Applicant: BERKLEY LIGHTS, INC.
    Inventors: Kristin G. BEAUMONT, Peter J. BEEMILLER, Volker L.S. KURZ, Gregory G. LAVIEU, Xiaohua WANG, Aathavan KARUNAKARAN
  • Publication number: 20220325240
    Abstract: Cartridges for manufacturing a population of cells suitable for formulation as a cellular therapeutic are disclosed herein, along with systems and instruments for operating the cartridges and performing methods to generate the population of cells suitable for formulation as a cellular therapeutic. The population of cells suitable for formulation as a cellular therapeutic can be immunological cells, such as T lymphocytes, including endogenous T cells (ETCs), tumor infiltrating lymphocytes (TILs), CAR T-cells, TCR engineered T-cells, or otherwise engineered T-cells. The systems and methods can be largely automated.
    Type: Application
    Filed: January 12, 2022
    Publication date: October 13, 2022
    Inventors: Andrew W. McFarland, Peter J. Beemiller, Guido K. Stadler, Alexander J. Mastroianni, Joshua J. Cardiel Rivera, Darcy K. Kelly-Greene, Jonathan Cloud Dragon Hubbard, Natalie C. Marks, Long Van Le, Ke-Chih Lin
  • Patent number: 11454629
    Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: September 27, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L. S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran
  • Publication number: 20210349075
    Abstract: Methods are provided for the assay of secreted biomolecules using automated detection and characterization of micro-objects in a microfluidic device. The biomolecules can be secreted by cells, particularly immunological cells, such as T cells. The biomolecules being assayed can include cytokines, growth factors, and the like. Methods are also provided for assaying the cytotoxicity of a cell with respect to another, target cell. Also provided are kits and non-transitory computer-readable media in which programs are stored for causing a system comprising a computer to perform automated methods for detecting secreted biomolecules and/or cytotoxicity in a microfluidic device.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 11, 2021
    Inventors: Yelena BRONEVETSKY, Annamaria MOCCIARO, Guido K. STADLER, Peter J. BEEMILLER, Natalie C. MARKS, Duane SMITH, Vincent Haw Tien PAI, Jason M. MCEWEN, Amanda L. GOODSELL, John A. TENNEY, Thomas M. VETTERLI, Hansohl E. Kim
  • Publication number: 20210011015
    Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.
    Type: Application
    Filed: June 22, 2020
    Publication date: January 14, 2021
    Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L.S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran
  • Publication number: 20200299351
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to activate T Lymphocytes.
    Type: Application
    Filed: January 15, 2020
    Publication date: September 24, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Peter J. Beemiller, Alexander J. Mastroianni, Shao Ning Pei, Randall D. Lowe, JR., Annamaria Mocciaro, Kevin D. Loutherback, Yelena Bronevetsky, Guido K. Stadler, Andrew W. McFarland, Kevin T. Chapman, Duane Smith, Natalie C. Marks, Amanda L. Goodsell
  • Patent number: 10705082
    Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: July 7, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L. S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran
  • Publication number: 20200139362
    Abstract: Proto-antigen-presenting surfaces and related kits, methods, and uses are provided. The proto-antigen-presenting surface can comprise a plurality of primary activating molecular ligands comprising a major histocompatibility complex (MHC) molecule configured to bind to a T cell receptor (TCR) of a T cell and a plurality of of co-activating molecular ligands each including a TCR co-activating molecule or an adjunct TCR activating molecule, wherein an exchange factor is bound to the MHC molecules. Exchange factors include, e.g., dipeptides such as GL, GF, GR, etc. Proto-antigen-presenting surfaces can be used to rapidly prepare antigen-presenting surfaces comprising one or more peptide antigens of interest by contacting the proto-antigen-presenting surface with one or more peptide antigens so as to displace the exchange factor. As such, the disclosure facilitates rapid evaluation of the immunogenicity of peptide antigens for activating T lymphocytes.
    Type: Application
    Filed: October 17, 2019
    Publication date: May 7, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Peter J. BEEMILLER, Alexander J. MASTROIANNI, Shao Ning PEI, Randall D. LOWE, Jr., Annamaria MOCCIARO, Kevin D. LOUTHERBACK, Yelena BRONEVETSKY, Guido K. STADLER, Andrew W. MCFARLAND, Kevin T. CHAPMAN, Duane SMITH, Natalie C. MARKS, Amanda L. GOODSELL
  • Publication number: 20200123491
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects.
    Type: Application
    Filed: September 20, 2019
    Publication date: April 23, 2020
    Inventors: Peter J. BEEMILLER, Alexander J. MASTROIANNI, Randall D. LOWE, JR., Yelena BRONEVETSKY
  • Publication number: 20200115680
    Abstract: Methods of expanding T lymphocytes in a microfluidic device are provided. The methods can include introducing one or more T lymphocytes into a microfluidic device; contacting the one or more T lymphocytes with an activating agent; and perfusing culture medium through the microfluidic device for a period of time sufficient to allow the one or more T lymphocytes to undergo at least one round of mitotic cell division. The expansion can be non-specific or antigen-specific. T lymphocytes produced according to the disclosed methods are also provided, along with methods of treating cancer in a subject. The methods of treating cancer can include isolating T lymphocytes from a tissue sample obtained from the subject; expanding the isolated T lymphocytes in a microfluidic device; exporting the expanded T lymphocytes from the microfluidic device; and reintroducing the expanded T lymphocytes into the subject.
    Type: Application
    Filed: July 19, 2019
    Publication date: April 16, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Yelena Bronevetsky, Xiaohua Wang, Peter J. Beemiller, Kristin G. Beaumont, Randall D. Lowe, JR., Alexander J. Mastroianni, Kevin T. Chapman, Natalie C. Marks
  • Publication number: 20190283026
    Abstract: Methods of sorting T lymphocytes in a microfluidic device are provided. The methods can include flowing a fluid sample comprising T lymphocytes through a region of a microfluidic device that contains an array of posts. The array of posts can be configured to have a critical size (Dc) that separates activated T lymphocytes from naïve T lymphocytes. Also provided are microfluidic devices having an array of posts configured to separate activated T lymphocytes from naïve T lymphocytes, compositions enriched for T lymphocytes, particularly activated T lymphocytes that are known to be reactive to an antigen of interest, and methods of treating subjects suffering from a pathogenic disorder or cancer by administering such compositions.
    Type: Application
    Filed: January 22, 2019
    Publication date: September 19, 2019
    Inventors: Kevin D. Loutherback, Yelena Bronevetsky, Peter J. Beemiller, Xiaohua Wang, Kevin T. Chapman
  • Publication number: 20180135011
    Abstract: Methods of expanding T lymphocytes in a microfluidic device are provided. The methods can include introducing one or more T lymphocytes into a microfluidic device; contacting the one or more T lymphocytes with an activating agent; and perfusing culture medium through the microfluidic device for a period of time sufficient to allow the one or more T lymphocytes to undergo at least one round of mitotic cell division. The expansion can be non-specific or antigen-specific. T lymphocytes produced according to the disclosed methods are also provided, along with methods of treating cancer in a subject. The methods of treating cancer can include isolating T lymphocytes from a tissue sample obtained from the subject; expanding the isolated T lymphocytes in a microfluidic device; exporting the expanded T lymphocytes from the microfluidic device; and reintroducing the expanded T lymphocytes into the subject.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 17, 2018
    Inventors: Yelena Bronevetsky, Xiaohua Wang, Peter J. Beemiller, Kristin G. Beaumont, Randall D. Lowe, JR., Alexander J. Mastroianni, Kevin T. Chapman
  • Publication number: 20170184583
    Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 29, 2017
    Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L.S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran