Patents by Inventor Peter J. Delfyett

Peter J. Delfyett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080273209
    Abstract: Provided are systems and methods for performing high-precision length measurement. One such system includes: an optical receiver, configure to receive a reflected optical pulse from a target; an optical combiner, configured to generate a combined optical pulse using the reflected optical pulse and a reference optical pulse; and a signal analyzer configured to determine a distance to the target using a depth of modulation value of the combined signal. A method as disclosed herein includes the steps of determining a first length component of a combined optical signal using a depth of modulation value and determining a second length component of the combined optical signal using a modulation period value.
    Type: Application
    Filed: August 30, 2006
    Publication date: November 6, 2008
    Inventor: Peter J. Delfyett
  • Publication number: 20080140060
    Abstract: The present invention includes a method of surgical material removal from a body by optical-ablation with controlled pulse energy from an amplifier including inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal; controlling the energy of a pulse and the pulse repetition rate and by knowing the type of material being removed, the system can control the removal to predetermined rate and, thus knowing the removal rate, it can know how long to run to stop at the predetermined volume.
    Type: Application
    Filed: February 7, 2008
    Publication date: June 12, 2008
    Inventors: Richard Stoltz, Peter J. Delfyett
  • Patent number: 7367969
    Abstract: The present invention includes a method of surgical material removal from a body by optical-ablation with controlled pulse energy from an amplifier including inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal; controlling the energy of a pulse and the pulse repetition rate and by knowing the type of material being removed, the system can control the removal to predetermined rate and, thus knowing the removal rate, it can know how long to run to stop at the predetermined volume.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: May 6, 2008
    Assignee: Raydiance, Inc.
    Inventors: Richard Stoltz, Peter J. Delfyett
  • Publication number: 20080100823
    Abstract: Provided are systems and methods for long-range, high-resolution, laser radar range detection. In one embodiment such a system includes an optical pulse modifier configured generated a stretched optical pulse and an optical amplifier configured to increase an optical power of the stretched optical pulse The system can further include an optical spectrum analyzer configured to determine a wavelength of a spectral peak that results from interference between a first amplified stretched pulse that is reflected from a target and a second amplified stretched pulse that is spectrally reversed.
    Type: Application
    Filed: July 25, 2006
    Publication date: May 1, 2008
    Inventors: Peter J. Delfyett, Kyungbum Kim, Leonard Kisimbi, Shinwook Lee
  • Publication number: 20070280704
    Abstract: A signal receiver, such as an RF-matched filter receiver, includes an optical source (e.g. a mode-locked laser) providing an optical signal, and a first optical modulator to modulate the optical signal with a received RF signal and provide a modulated optical signal. A second optical modulator modulates the modulated optical signal with a reference signal and provides a twice modulated optical signal. The modulators may be Mach-Zehnder Modulators (MZM) and/or Indium Phosphide (InP) modulators. An optical detector receives the twice modulated optical signal and provides a detected signal, and a processing unit receives the detected signal and extracts or measures cross-correlation between the received RF signal and the reference signal.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 6, 2007
    Applicants: Harris Corporation, Alcatel-Lucent, University of Central Florida
    Inventors: Bruce FITZGERALD, Richard DeSALVO, Young Kai CHEN, Andreas LEVEN, Peter J. DELFYETT
  • Patent number: 7143769
    Abstract: The present invention includes the method of using optically-pumped optical amplifiers to remove material from a body by optical-ablation through time-compressing the amplified pulse and illuminating a portion of the body with the time-compressed optical pulse. The pulse energy of semiconductor optical amplifiers may also be adjusted by controlling the pump diode current.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 5, 2006
    Inventors: Richard Stoltz, Peter J. Delfyett
  • Patent number: 7095772
    Abstract: Methods, devices and systems for generating ultrashort optical linear chirped pulses with very high power by amplifying the pulses so that their temporal duration is longer than the storage time of the amplifying medium. The additional gain factor is related to the ratio of the storage time to the stretched pulse. A preferred embodiment connects a mode locked laser source that generates optical pulses whose duration is stretched with a chirped fiber Bragg grating. Embodiments include methods, devices and systems causing an extreme chirped pulse amplifier (XCPA) effect in an oscillator.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 22, 2006
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Peter J. Delfyett, Kyungbum Kim, Bojan Resan
  • Patent number: 6735229
    Abstract: Methods and systems for using a laser type clock to produce a train of ultra-stable optical pulses. The methods and systems include generating an approximately 10 GHz ultralow noise pulse train from a harmonically modelocked laser having an intracavity Fabry-Perot etalon filter from a semiconductor lasers such as ring lasers, and the like. System output can have residual phase modulation(PM) noise values of approximately 18 fs and amplitude modulation(AM) noise values of approximately 0.05% RMS, and residual phase modulation(PM) noise values of approximately 94 fs and amplitude modulation(AM) noise values of approximately 0.05% RMS.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: May 11, 2004
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Tolga Yilmaz, Christopher M. Depriest
  • Patent number: 6690686
    Abstract: Multiwavelength modelocked laser systems and methods for reducing intensity fluctuations and amplitude noise in each of the wavelength channels as well as manipulating the interwavelength phase coherence properties. The systems and methods can include lens, semiconductor optical amplifier, grating, cylindrical lens, rod lens and an approximately 7 nm MQW saturable absorber between mirrors for providing a laser cavity resonator for hybridly modelocked operation. Additional systems and methods can include two different positions for the saturable absorber inside the laser resonator which enables direction of the interwavelength phase coherence properties. Up to approximately 300 MHz optical pulse trains in each of up to approximately three channels can be generated. Combining gain flattening and noise suppression within the optical cavity of the modelocked laser can result in generating up to approximately 123 wavelength channels, each having up to approximately 6 Giga Hertz optical pulse trains.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: February 10, 2004
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Michael M. Mielke
  • Patent number: 6671298
    Abstract: Photonic arbitrary waveform methods and generation by manipulating the phase-locked longitudinal modes of an approximately 12.4 GHz fundamentally modelocked external-cavity semiconductor laser are demonstrated. Photonically synthesized sine waves (center frequency of approximately 37.2 GHz, linewidth less than approximately 100 Hz, dynamic range approximately 50 dB at approximately 100 Hz resolution bandwidth) and complex, arbitrarily shaped optical/microwave frequency waveforms with instantaneous bandwidths up to approximately 75 GHz are shown. A WDM filter can be used to separate individual longitudinal modes of a modelocked laser. Photonic arbitrary generation occurs through the modulation of individual channels before recombining the channels, followed by amplifying the output.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: December 30, 2003
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Tolga Yilmaz, Christopher M. Depriest
  • Patent number: 6661816
    Abstract: Single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generates from four to more than twenty tunable WDM channels. A four channel version trsnsmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. Wavelength tuning over 18 nm has been demonstrated with channel spacing ranging from approximately 0.8 nm to approximately 2 nm. A second version uses approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz. A spectral correlation across the multiwavelength spectrum which can be for utilizing single stripe laser diodes as multiwavelength sources in WDM-TDM networks. A third version of multiple wavelength generation uses a fiber-array and grating. And a fourth version of wavelength generation uses a Fabry-Perot Spectral filter. Also solid state laser sources and optical fiber laser sources can be used.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: December 9, 2003
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Hong Shi
  • Patent number: 6647031
    Abstract: A hybrid WDM-TDM optical link employing a hybrid modelocked multi-wavelength semiconductor which provides approximately 4 to approximately 20 wavelength channels that makes possible modulated multiplexed data which when demultiplexed by ultra fast optical demultiplexing provides rates suitable for conventional electronic photo receivers. The link uses single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generate from approximately four to more than approximately twenty tunable WDM channels. Diode laser can also include InP, InGaAlP, InGaAsP, InGaP, InGaAs. A four channel version transmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. When generating approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz, there is provided optical data and transmission systems operating at rates in excess of 800 Gbits/s.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: November 11, 2003
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Brian Mathason
  • Publication number: 20030165164
    Abstract: Multiwavelength modelocked laser systems and methods for reducing intensity fluctuations and amplitude noise in each of the wavelength channels as well as manipulating the interwavelength phase coherence properties. The systems and methods can include lens, semiconductor optical amplifier, grating, cylindrical lens, rod lens and an approximately 7 nm MQW saturable absorber between mirrors for providing a laser cavity resonator for hybridly modelocked operation. Additional systems and methods can include two different positions for the saturable absorber inside the laser resonator which enables direction of the interwavelength phase coherence properties. Up to approximately 300 MHz optical pulse trains in each of up to approximately three channels can be generated. Combining gain flattening and noise suppression within the optical cavity of the modelocked laser can result in generating up to approximately 123 wavelength channels, each having up to approximately 6 Giga Hertz optical pulse trains.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 4, 2003
    Inventors: Peter J. Delfyett, Michael M. Mielke
  • Publication number: 20020021462
    Abstract: A hybrid WDM-TDM optical link employing a hybrid modelocked multi-wavelength semiconductor which provides approximately 4 to approximately 20 wavelength channels that makes possible modulated multiplexed data which when demultiplexed by ultra fast optical demultiplexing provides rates suitable for conventional electronic photo receivers. The link uses single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generate from approximately four to more than approximately twenty tunable WDM channels. Diode laser can also include InP, InGaAlP, InGaAsP, InGaP, InGaAs. A four channel version transmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. When generating approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz, there is provided optical data and transmission systems operating at rates in excess of 800 Gbits/s.
    Type: Application
    Filed: July 13, 2001
    Publication date: February 21, 2002
    Applicant: University of Central Florida
    Inventors: Peter J. Delfyett, Brian Mathason
  • Patent number: 6314115
    Abstract: A hybrid WDM-TDM optical link employing a hybrid modelocked multi-wavelength semiconductor which provides approximately 4 to approximately 20 wavelength channels that makes possible modulated multiplexed data which when demultiplexed by ultra fast optical demultiplexing provides rates suitable for conventional electronic photo receivers. The link uses single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generate from approximately four to more than approximately twenty tunable WDM channels. Diode laser can also include InP, InGaAlP, InGaAsP, InGaP, InGaAs. A four channel version transmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. When generating approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz, there is provided optical data and transmission systems operating at rates in excess of 800 Gbits/s.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: November 6, 2001
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Brian Mathason
  • Publication number: 20010036209
    Abstract: Single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generates from four to more than twenty tunable WDM channels. A four channel version transmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. Wavelength tuning over 18 nm has been demonstrated with channel spacing ranging from approximately 0.8 nm to approximately 2 nm. A second version uses approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz. A spectral correlation across the multiwavelength spectrum which can be for utilizing single stripe laser diodes as multiwavelength sources in WDM-TDM networks. A third version of multiple wavelength generation uses a fiber-array and grating. And a fourth version of wavelength generation uses a Fabry-Perot Spectral filter. Also solid state laser sources and optical fiber laser sources can be used.
    Type: Application
    Filed: April 10, 2001
    Publication date: November 1, 2001
    Applicant: University of Central Florida
    Inventors: Peter J. Delfyett, Hong Shi
  • Patent number: 6256328
    Abstract: Single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generates from four to more than twenty tunable WDM channels. A four channel version transmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. Wavelength tuning over 18 nm has been demonstrated with channel spacing ranging from approximately 0.8 nm to approximately 2 nm. A second version uses approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz. A spectral correlation across the multiwavelength spectrum which can be for utilizing single stripe laser diodes as multiwavelength sources in WDM-TDM networks. A third version of multiple wavelength generation uses a fiber-array and grating. And a fourth version of wavelength generation uses a Fabry-Perot Spectral filter. Also solid state laser sources and optical fiber laser sources can be used.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: July 3, 2001
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Hong Shi
  • Patent number: 6141577
    Abstract: An optical coherence tomography(OCT) and spectral interferometry imaging probe for the automatic screening and diagnosis of cervical and skin cancer in vivo. The probe eliminates the old techniques of having to perform Pap smears followed by a biopsy, known as colposcopy. The novel probe is cylindrical in shape and has a disposable outer plastic shield. Inside the probe is a motor driven rotatable casing having a planar optical fiber bundle array therein. The fiber bundle array has plastic light coupling lenslet arrays on both ends. The exposed end of the probe has one lenslet array disc that couples light between the probe and an interior of the cervix area being examined. Both the casing and the bundle array rotate relative to the outer probe walls. Inside the casing is a rotatable motor driven scanning mirror which couples passes light from an incoming second fiber bundle array to the lenslet array on the inside end of the rotatable casing fiber bundle array.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: October 31, 2000
    Assignee: University of Central Florida
    Inventors: Jannick P. Rolland, Peter J. Delfyett, Jr.
  • Patent number: 6072765
    Abstract: An optical coherence tomography(OCT) and spectral interferometry imaging probe for the automatic screening and diagnosis of cervical and skin cancer in vivo. The probe eliminates the old techniques of having to perform Pap smears followed by a biopsy, known as colposcopy. The novel probe is cylindrical in shape and has a disposable outer plastic shield. Inside the probe is a motor driven rotatable casing having a planar optical fiber bundle array therein. The fiber bundle array has plastic light coupling lenslet arrays on both ends. The exposed end of the probe has one lenslet array disc that couples light between the probe and an interior of the cervix area being examined. Both the casing and the bundle array rotate relative to the outer probe walls. Inside the casing is a rotatable motor driven scanning mirror which couples passes light from an incoming second fiber bundle array to the lenslet array on the inside end of the rotatable casing fiber bundle array.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: June 6, 2000
    Assignee: University of Central Florida
    Inventors: Jannick P. Rolland, Peter J. Delfyett, Jr.
  • Patent number: 5921926
    Abstract: An optical coherence tomography(OCT) and spectral interferometry imaging probe for the automatic screening and diagnosis of cervical and skin cancer in vivo. The probe eliminates the old techniques of having to perform Pap smears followed by a biopsy, known as colposcopy. The novel probe is cylindrical in shape and has a disposable outer plastic shield. Inside the probe is a motor driven rotatable casing having a planar optical fiber bundle array therein. The fiber bundle array has plastic light coupling lenslet arrays on both ends. The exposed end of the probe has one lenslet array disc that couples light between the probe and an interior of the cervix area being examined. Both the casing and the bundle array rotate relative to the outer probe walls. Inside the casing is a rotatable motor driven scanning mirror which couples passes light from an incoming second fiber bundle array to the lenslet array on the inside end of the rotatable casing fiber bundle array.
    Type: Grant
    Filed: December 31, 1997
    Date of Patent: July 13, 1999
    Assignee: University of Central Florida
    Inventors: Jannick P. Rolland, Peter J. Delfyett, Jr.