Patents by Inventor Peter J. Kardassakis

Peter J. Kardassakis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240045383
    Abstract: An electronic watch may include a housing defining a side wall having a through-hole and a crown assembly including an actuation member. The actuation member may include a crown shaft extending through the through-hole and having an exterior portion defining an input surface and a crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft. The crown assembly may further include an optical encoder component attached to the actuation member and defining a group of optical features. The electronic watch may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features and an electrocardiograph sensor comprising a sensing component. The sensing component may be conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 8, 2024
    Inventors: Steven C. Roach, Sameer Pandya, Erik G. de Jong, Erik L. Wang, Peter J. Kardassakis, Steven P. Cardinali
  • Patent number: 11796968
    Abstract: An electronic watch may include a housing defining a side wall having a through-hole and a crown assembly including an actuation member. The actuation member may include a crown shaft extending through the through-hole and having an exterior portion defining an input surface and a crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft. The crown assembly may further include an optical encoder component attached to the actuation member and defining a group of optical features. The electronic watch may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features and an electrocardiograph sensor comprising a sensing component. The sensing component may be conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: October 24, 2023
    Assignee: Apple Inc.
    Inventors: Steven C. Roach, Sameer Pandya, Erik G. de Jong, Erik L. Wang, Peter J. Kardassakis, Steven P. Cardinali
  • Publication number: 20220043402
    Abstract: An electronic watch may include a housing defining a side wall having a through-hole and a crown assembly including an actuation member. The actuation member may include a crown shaft extending through the through-hole and having an exterior portion defining an input surface and a crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft. The crown assembly may further include an optical encoder component attached to the actuation member and defining a group of optical features. The electronic watch may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features and an electrocardiograph sensor comprising a sensing component. The sensing component may be conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Steven C. Roach, Sameer Pandya, Erik G. de Jong, Erik L. Wang, Peter J. Kardassakis, Steven P. Cardinali
  • Patent number: 11194298
    Abstract: An electronic watch may include a housing defining a side wall having a through-hole and a crown assembly including an actuation member. The actuation member may include a crown shaft extending through the through-hole and having an exterior portion defining an input surface and a crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft. The crown assembly may further include an optical encoder component attached to the actuation member and defining a group of optical features. The electronic watch may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features and an electrocardiograph sensor comprising a sensing component. The sensing component may be conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 7, 2021
    Assignee: APPLE INC.
    Inventors: Steven C. Roach, Sameer Pandya, Erik G. de Jong, Erik L. Wang, Peter J. Kardassakis, Steven P. Cardinali
  • Patent number: 11011943
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 18, 2021
    Assignee: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Patent number: 10855110
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: December 1, 2020
    Assignee: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20200073339
    Abstract: An electronic watch may include a housing defining a side wall having a through-hole and a crown assembly including an actuation member. The actuation member may include a crown shaft extending through the through-hole and having an exterior portion defining an input surface and a crown ring coupled to the exterior portion of the crown shaft and electrically isolated from the crown shaft. The crown assembly may further include an optical encoder component attached to the actuation member and defining a group of optical features. The electronic watch may further include an optical detector configured to detect rotation of the crown assembly by detecting motion of the group of optical features and an electrocardiograph sensor comprising a sensing component. The sensing component may be conductively coupled to the actuation member via a conductive path at least partially defined by the crown shaft.
    Type: Application
    Filed: December 10, 2018
    Publication date: March 5, 2020
    Inventors: Steven C. Roach, Sameer Pandya, Erik G. de Jong, Erik L. Wang, Peter J. Kardassakis, Steven P. Cardinali
  • Publication number: 20190393730
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: July 30, 2019
    Publication date: December 26, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Patent number: 10491041
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 26, 2019
    Assignee: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Patent number: 10381881
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: August 13, 2019
    Assignee: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20190074706
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20190074724
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20190074719
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20190074729
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Patent number: 10170711
    Abstract: A thin-film transistor layer, an organic light-emitting diode layer, and other layers may be used in forming an array of pixels on a substrate in a display. Vias may be formed through one or more layers of the display such as the substrate layer to form vertical signal paths. The vertical signal paths may convey signals between display driver circuitry underneath the display and the pixels. The vias may pass through a polymer layer and may contact pads formed within openings in the substrate. Vias may pass through a glass support layer. Metal traces may be formed in the thin-film transistor layer to create signal paths such as data lines and gate lines. Portions of the metal traces may form vias through a polymer layer such as a substrate layer or a polymer layer that has been formed on top of the substrate layer.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: January 1, 2019
    Assignee: Apple Inc.
    Inventors: Jason C. Sauers, Jean-Pierre S. Guillou, Peter J. Kardassakis, Shaowei Qin, Yi Tao
  • Patent number: 9780554
    Abstract: A moisture sensor includes one or more electrodes and sensor circuitry configured to detect the presence of moisture by detecting a change in an electrical measurement of the one or more electrodes. In response, the sensor may signal a component to perform an action. In some examples, capacitance and/or resistance between a pair of electrodes may be monitored, such as a pair of electrode sheets or meshes positioned in passage of a device that are separated by a gap. In various examples, a first electrode may be mounted cantilever to a second electrode and the presence of moisture between the electrodes may pull a free end closer to the second electrode. In some examples, the presence of moisture may cause bridging of a gap between two or more electrodes to complete or corrosion of a portion of an electrode to result in a change of resistance that can be detected.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: October 3, 2017
    Assignee: Apple Inc.
    Inventors: Peter J. Kardassakis, Farhan Panthaki, Samuel B. Weiss
  • Publication number: 20170030851
    Abstract: A moisture sensor includes one or more electrodes and sensor circuitry configured to detect the presence of moisture by detecting a change in an electrical measurement of the one or more electrodes. In response, the sensor may signal a component to perform an action. In some examples, capacitance and/or resistance between a pair of electrodes may be monitored, such as a pair of electrode sheets or meshes positioned in passage of a device that are separated by a gap. In various examples, a first electrode may be mounted cantilever to a second electrode and the presence of moisture between the electrodes may pull a free end closer to the second electrode. In some examples, the presence of moisture may cause bridging of a gap between two or more electrodes to complete or corrosion of a portion of an electrode to result in a change of resistance that can be detected.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Peter J. Kardassakis, Farhan Panthaki, Samuel B. Weiss
  • Publication number: 20160329386
    Abstract: A thin-film transistor layer, an organic light-emitting diode layer, and other layers may be used in forming an array of pixels on a substrate in a display. Vias may be formed through one or more layers of the display such as the substrate layer to form vertical signal paths. The vertical signal paths may convey signals between display driver circuitry underneath the display and the pixels. The vias may pass through a polymer layer and may contact pads formed within openings in the substrate. Vias may pass through a glass support layer. Metal traces may be formed in the thin-film transistor layer to create signal paths such as data lines and gate lines. Portions of the metal traces may form vias through a polymer layer such as a substrate layer or a polymer layer that has been formed on top of the substrate layer.
    Type: Application
    Filed: April 5, 2016
    Publication date: November 10, 2016
    Inventors: Jason C. Sauers, Jean-Pierre S. Guillou, Peter J. Kardassakis, Shaowei Qin, Yi Tao
  • Publication number: 20160016395
    Abstract: Adhesive may be used to bond electronic device structures together. The adhesive may be a heat activated film. Heat to activate the film may be produced by vibrating electronic device structures so that they rub against each other. An ohmic heating element may be used to produce heat under the control of circuitry inside an electronic device and may be adjusted based on temperature sensor data. Infrared light may pass through a display cover layer to activate the heat activated film. Radio-frequency signals may heat the heat activated film and may be absorbed by fibers in the film or resonant elements such as metal traces. Exothermic reactions may be used to activate the film. An ultraviolet light source may initiate curing of a solid adhesive film layer before the layer is pressed between structures to be joined. A display may produce light that cures adhesive in an electronic device.
    Type: Application
    Filed: July 21, 2015
    Publication date: January 21, 2016
    Inventors: Tyler S. Bushnell, Erik G. de Jong, Peter J. Kardassakis, Shih-Min Hsu