Patents by Inventor Peter J. Vandervoorn

Peter J. Vandervoorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10115721
    Abstract: Techniques are disclosed for forming a planar-like transistor device on a fin-based field-effect transistor (finFET) architecture during a finFET fabrication process flow. In some embodiments, the planar-like transistor can include, for example, a semiconductor layer which is grown to locally merge/bridge a plurality of adjacent fins of the finFET architecture and subsequently planarized to provide a high-quality planar surface on which the planar-like transistor can be formed. In some instances, the semiconductor merging layer can be a bridged-epi growth, for example, comprising epitaxial silicon. In some embodiments, such a planar-like device may assist, for example, with analog, high-voltage, wide-Z transistor fabrication.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 30, 2018
    Assignee: INTEL CORPORATION
    Inventors: Walid M. Hafez, Peter J Vandervoorn, Chia-Hong Jan
  • Publication number: 20160276346
    Abstract: Techniques are disclosed for forming a planar-like transistor device on a fin-based field-effect transistor (finFET) architecture during a finFET fabrication process flow. In some embodiments, the planar-like transistor can include, for example, a semiconductor layer which is grown to locally merge/bridge a plurality of adjacent fins of the finFET architecture and subsequently planarized to provide a high-quality planar surface on which the planar-like transistor can be formed. In some instances, the semiconductor merging layer can be a bridged-epi growth, for example, comprising epitaxial silicon. In some embodiments, such a planar-like device may assist, for example, with analog, high-voltage, wide-Z transistor fabrication.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Applicant: INTEL CORPORATION
    Inventors: WALID M. HAFEZ, PETER J. VANDERVOORN, CHIA-HONG JAN
  • Patent number: 9356023
    Abstract: Techniques are disclosed for forming a planar-like transistor device on a fin-based field-effect transistor (finFET) architecture during a finFET fabrication process flow. In some embodiments, the planar-like transistor can include, for example, a semiconductor layer which is grown to locally merge/bridge a plurality of adjacent fins of the finFET architecture and subsequently planarized to provide a high-quality planar surface on which the planar-like transistor can be formed. In some instances, the semiconductor merging layer can be a bridged-epi growth, for example, comprising epitaxial silicon. In some embodiments, such a planar-like device may assist, for example, with analog, high-voltage, wide-Z transistor fabrication.
    Type: Grant
    Filed: March 30, 2013
    Date of Patent: May 31, 2016
    Assignee: INTEL CORPORATION
    Inventors: Walid M. Hafez, Peter J. Vandervoorn, Chia-Hong Jan
  • Patent number: 8889508
    Abstract: Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: November 18, 2014
    Assignee: Intel Corporation
    Inventors: Jeng-Ya D. Yeh, Peter J. Vandervoorn, Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park
  • Publication number: 20140308785
    Abstract: Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Inventors: Jeng-Ya D. Yeh, Peter J. Vandervoorn, Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park
  • Publication number: 20140291766
    Abstract: Techniques are disclosed for forming a planar-like transistor device on a fin-based field-effect transistor (finFET) architecture during a finFET fabrication process flow. In some embodiments, the planar-like transistor can include, for example, a semiconductor layer which is grown to locally merge/bridge a plurality of adjacent fins of the finFET architecture and subsequently planarized to provide a high-quality planar surface on which the planar-like transistor can be formed. In some instances, the semiconductor merging layer can be a bridged-epi growth, for example, comprising epitaxial silicon. In some embodiments, such a planar-like device may assist, for example, with analog, high-voltage, wide-Z transistor fabrication.
    Type: Application
    Filed: March 30, 2013
    Publication date: October 2, 2014
    Inventors: Walid M. Hafez, Peter J. Vandervoorn, Chia-Hong Jan
  • Patent number: 8796772
    Abstract: Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventors: Jeng-Ya D. Yeh, Peter J. Vandervoorn, Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park
  • Publication number: 20140084381
    Abstract: Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Inventors: Jeng-Ya D. Yeh, Peter J. Vandervoorn, Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park