Patents by Inventor Peter James GJELTEMA

Peter James GJELTEMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11549919
    Abstract: Systems and methods for prediction of state of charge (SOH), state of health (SOC) and other characteristics of batteries using acoustic signals, includes determining acoustic data at two or more states of charge and determining a reduced acoustic data set representative of the acoustic data at the two or more states of charge. The reduced acoustic data set includes time of flight (TOF) shift, total signal amplitude, or other data points related to the states of charge. Machine learning models use at least the reduced acoustic dataset in conjunction with non-acoustic data such as voltage and temperature for predicting the characteristics of any other independent battery.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: January 10, 2023
    Assignee: The Trustees of Princeton University
    Inventors: Daniel Artemis Steingart, Shoham Bhadra, Andrew Gaheem Hsieh, Benjamin Hertzberg, Peter James Gjeltema, Clarence Worth Rowley, III, Alexandre S. R. Goy, Jason Wolf Fleischer
  • Patent number: 10684262
    Abstract: Systems and methods for prediction of state of charge (SOH), state of health (SOC) and other characteristics of batteries using acoustic signals, includes determining acoustic data at two or more states of charge and determining a reduced acoustic data set representative of the acoustic data at the two or more states of charge. The reduced acoustic data set includes time of flight (TOF) shift, total signal amplitude, or other data points related to the states of charge. Machine learning models use at least the reduced acoustic dataset in conjunction with non-acoustic data such as voltage and temperature for predicting the characteristics of any other independent battery.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: June 16, 2020
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Daniel Artemis Steingart, Shoham Bhadra, Andrew Gaheem Hsieh, Benjamin Hertzberg, Peter James Gjeltema, Clarence Worth Rowley, III, Alexandre S. R. Goy, Jason Wolf Fleischer
  • Publication number: 20190219547
    Abstract: Systems and methods for prediction of state of charge (SOH), state of health (SOC) and other characteristics of batteries using acoustic signals, includes determining acoustic data at two or more states of charge and determining a reduced acoustic data set representative of the acoustic data at the two or more states of charge. The reduced acoustic data set includes time of flight (TOF) shift, total signal amplitude, or other data points related to the states of charge. Machine learning models use at least the reduced acoustic dataset in conjunction with non-acoustic data such as voltage and temperature for predicting the characteristics of any other independent battery.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 18, 2019
    Inventors: Daniel Artemis Steingart, Shoham Bhadra, Andrew Gaheem Hsieh, Benjamin Hertzberg, Peter James Gjeltema, Clarence Worth Rowley, III, Alexandre S.R. Goy, Jason Wolf Fleischer
  • Publication number: 20190064123
    Abstract: Systems and methods for prediction of state of charge (SOH), state of health (SOC) and other characteristics of batteries using acoustic signals, includes determining acoustic data at two or more states of charge and determining a reduced acoustic data set representative of the acoustic data at the two or more states of charge. The reduced acoustic data set includes time of flight (TOF) shift, total signal amplitude, or other data points related to the states of charge. Machine learning models use at least the reduced acoustic dataset in conjunction with non-acoustic data such as voltage and temperature for predicting the characteristics of any other independent battery.
    Type: Application
    Filed: October 3, 2018
    Publication date: February 28, 2019
    Inventors: Daniel Artemis Steingart, Shoham Bhadra, Andrew Gaheem Hsieh, Benjamin Hertzberg, Peter James Gjeltema, Clarence Worth Rowley, III, Alexandre S.R. Goy, Jason Wolf Fleischer
  • Patent number: 10132781
    Abstract: A method, an apparatus and a system for interrogating a battery in order to determine one or more of: (i) its state of charge (SOC), (ii) its state of health (SOH), (iii) physical state of one or more internal components or parts, which utilizes at least one sound source for transmitting a signal (e.g., a sound wave or sound pulse through or across the battery, and at least one sound receiver for receiving a signal from the battery, which received signal is representative of the physical state of the battery being interrogated. The interrogation method is noninvasive, namely does not require the depletion of a portion of the charge of the battery being tested or settlement or the destruction of the battery in order to evaluate one or more of (i), (ii) and (iii).
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: November 20, 2018
    Assignee: The Trustees of Princeton University
    Inventors: Daniel Artemus Steingart, Shoham Bhadra, Andrew Hsieh, Benjamin Hertzberg, Peter James Gjeltema, Clarence Worth Rowley, III, Alexandre S. R. Goy, Jason Wolf Fleischer
  • Publication number: 20160223498
    Abstract: A method, an apparatus and a system for interrogating a battery in order to determine one or more of: (i) its state of charge (SOC), (ii) its state of health (SOH), (iii) physical state of one or more internal components or parts, which utilizes at least one sound source means for transmitting a signal (e.g., a sound wave or sound pulse through or across the battery, and at least one sound receiver means for receiving a signal from the battery, which received signal is representative of the physical state of the battery being interrogated. The interrogation method is noninvasive, namely does not require the depletion of a portion of the charge of the battery being tested or settlement or the destruction of the battery in order to evaluate one or more of (i), (ii) and (iii).
    Type: Application
    Filed: January 30, 2015
    Publication date: August 4, 2016
    Inventors: Daniel Artemus STEINGART, Shoham BHADRA, Andrew HSIEH, Benjamin HERTZBERG, Peter James GJELTEMA, Clarence Worth ROWLEY, III