Patents by Inventor Peter James Maloney

Peter James Maloney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7988542
    Abstract: To obtain a quality-meat-attached backbone part suitable as a material for minced fish the invention proposes cutting off a fin part and a kidney from a meat-attached backbone part obtained when filleting a fish into three pieces. The meat-attached backbone part is conveyed by a pair of upper and lower conveyor belts while being sandwiched and held between the belts. When the backbone part reaches a fin cutter arranged in a midstream of the conveyance, a belly part is pushed by a first pushing lever while a back part of the meat-attached backbone part is received and stopped by a receiving and stopping lever, and the back skin from a back fin to a tail fin is cut off by the fin cutter. Then, when the meat-attached backbone part reaches a kidney cutter, the belly part of the meat-attached backbone part is pushed by a second pushing lever to position the kidney-attached backbone section of the meat-attached backbone part at a cutting position by a kidney cutter.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: August 2, 2011
    Assignees: UniSea Inc., Toyo Suisan Kikai Co., Ltd., Nippon Suisan Kaisha, Ltd.
    Inventors: Shigetsugu Yamase, Tomoyori Tsukagoshi, Kohji Morita, Kazuharu Takeuchi, Takao Obara, Peter James Maloney
  • Patent number: 6655358
    Abstract: An improved engine fuel control detects combustion instability due to the use of high DI fuel during cold start and warm-up and compensates the fuel control for detected combustion instability through temporary enrichment of the delivered air/fuel ratio. When the engine idle speed error magnitude is less than a calibrated threshold, usage of high DI fuel is detected by identifying a surge signal based on the engine speed error fluctuation in a predetermined frequency range attributable to combustion instability due to the presence of high DI fuel in a cold engine. When the average amplitude of the surge signal exceeds a calibrated surge threshold, the presence of high DI fuel is detected. Additionally, the method is disabled for a prescribed period following commanded load transitions associated with the air conditioning system and the automatic transmission.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: December 2, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Peter James Maloney, In Kwang Yoo, Andrew D. Herman, Hallett D. Breidenbach, Deog H. Yoo, Craig A. Carlson
  • Patent number: 6637413
    Abstract: An improved engine fuel control detects combustion instability due to the use of high DI fuel during cold start and warm-up and compensates the fuel control for detected combustion instability through temporary enrichment of the delivered air/fuel ratio. The usage of high DI fuel is detected during an engine idle period following starting by monitoring the engine speed to identify an engine speed excursion more than a calibrated percentage below the desired idle speed. The detection method is enabled under specified environmental conditions, provided the engine run time is greater than a specified time and the engine temperature is within a specified range. Additionally, the method is disabled for a prescribed period following commanded load transitions associated with the air conditioning system and the automatic transmission.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: October 28, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Peter James Maloney, In Kwang Yoo, Andrew D. Herman, Hallett D. Breidenbach, Deog H. Yoo, Craig A. Carlson
  • Patent number: 6588409
    Abstract: An improved engine fuel control detects combustion instability due to the use of high driveability index (DI) fuel during cold start and warm-up and compensates the fuel control for detected combustion instability through temporary enrichment of the delivered air/fuel ratio. The usage of high DI fuel is detected during engine cranking by measuring the time required for the engine speed to increase from a lower reference speed to an upper reference speed, provided the engine run time is less than a calibrated value. A timer is started when the lower reference speed is achieved, and the timer value is compared to a crank time threshold determined as a function of the initial engine coolant temperature. If the timer value exceeds the crank time threshold before the engine speed reaches the upper reference speed, the presence of high DI fuel is indicated, and the air/fuel ratio is temporarily enriched.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: July 8, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Peter James Maloney, In Kwang Yoo, Deog H. Yoo, Andrew D. Herman, Hallett D. Breidenbach, Craig A. Carlson
  • Patent number: 6561014
    Abstract: A method and apparatus for conducting dynamometric testing of an internal combustion engine at a test site under a simulated atmospheric pressure that differs substantially from an actual ambient atmospheric pressure existing at the test site. The internal combustion engine has an air inlet for supplying an intake airflow for combustion within the internal combustion engine and an exhaust outlet for exhausting an exhaust flow exiting from the internal combustion engine. The method includes the steps of subjecting the air inlet to the simulated atmospheric pressure, subjecting the exhaust outlet to the simulated atmospheric pressure and operating the internal combustion engine while both of the air inlet and the exhaust outlet are subjected to the simulated atmospheric pressure.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: May 13, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, Peter James Maloney, Matt Osterhout
  • Publication number: 20030084712
    Abstract: A method and apparatus for conducting dynamometric testing of an internal combustion engine at a test site under a simulated atmospheric pressure that differs substantially from an actual ambient atmospheric pressure existing at the test site. The internal combustion engine has an air inlet for supplying an intake airflow for combustion within the internal combustion engine and an exhaust outlet for exhausting an exhaust flow exiting from the internal combustion engine. The method includes the steps of subjecting the air inlet to the simulated atmospheric pressure, subjecting the exhaust outlet to the simulated atmospheric pressure and operating the internal combustion engine while both of the air inlet and the exhaust outlet are subjected to the simulated atmospheric pressure.
    Type: Application
    Filed: December 20, 2002
    Publication date: May 8, 2003
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: James Craig Smith, Peter James Maloney, Matt Osterhout
  • Patent number: 6497135
    Abstract: A voltage sensing system that has a pair of input leads having a first input lead, and a second input lead each sensing a non-grounded voltage, and an amplifier coupled to the pair of input leads, the amplifier generating an amplifier output voltage in response to a voltage on the first input lead, a voltage on the second input lead and an offset voltage. The system further includes a controller for receiving the amplifier output voltage and determining an operating range, and an offset voltage generator for generating the offset voltage, the offset voltage generator altering the offset voltage in response to the operating range determined by the controller. An oxygen sensing system using a sample resistance for sensing a bi-directional current may be coupled to the voltage sensing system. A method for sensing air-to-fuel ratio includes sampling an input voltage drop derived from a pumping current across a sampling resistance. The input voltage is indicative of air-to-fuel ratio.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: December 24, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Stephen Paul Sanders, Peter James Maloney
  • Patent number: 6481273
    Abstract: An improved method of assessing the frequency response of an in vehicle exhaust gas air/fuel ratio sensor by measuring and analyzing the sensor response to a predetermined perturbation of the fuel delivered to the engine. In a first test mode that provides both quantitative and qualitative assessments, the perturbation is achieved by applying fixed biases to the fuel pulse widths of individual engine cylinders to create a rich/lean perturbation in the exhaust gas, and by adjusting the engine throttle to gradually vary the engine speed over a test interval so that the rich/lean perturbation correspondingly varies in frequency. Since the biases are fixed, intake port wall-wetting effects are minimized. In a second test mode that provides a qualitative assessment, the perturbation is achieved by applying an alternating fuel bias multiplier to every engine cylinder, with the engine operating at a fixed speed and load setting that is of interest for diagnostic purposes.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: November 19, 2002
    Assignee: Delphi Technologies, Inc.
    Inventor: Peter James Maloney
  • Publication number: 20020112699
    Abstract: An improved engine fuel control detects combustion instability due to the use of high DI fuel during cold start and warm-up and compensates the fuel control for detected combustion instability through temporary enrichment of the delivered air/fuel ratio. When the engine idle speed error magnitude is less than a calibrated threshold, usage of high DI fuel is detected by identifying a surge signal based on the engine speed error fluctuation in a predetermined frequency range attributable to combustion instability due to the presence of high DI fuel in a cold engine. The speed error fluctuation content in the predetermined frequency range is identified with a Butterworth bandpass filter, and the bandpass filter output is low pass filtered to identify an average amplitude of the surge signal. When the engine speed error magnitude exceeds the calibrated threshold, the inputs of bandpass and low pass filters are set to zero.
    Type: Application
    Filed: September 13, 2001
    Publication date: August 22, 2002
    Inventors: Peter James Maloney, In Kwang Yoo, Andrew D. Herman, Hallett D. Breidenbach, Deog H. Yoo, Craig A. Carlson
  • Publication number: 20020108432
    Abstract: An improved method of assessing the frequency response of an in-vehicle exhaust gas air/fuel ratio sensor by measuring and analyzing the sensor response to a predetermined perturbation of the fuel delivered to the engine. In a first test mode that provides both quantitative and qualitative assessments, the perturbation is achieved by applying fixed biases to the fuel pulse widths of individual engine cylinders to create a rich/lean perturbation in the exhaust gas, and by adjusting the engine throttle to gradually vary the engine speed over a test interval so that the rich/lean perturbation correspondingly varies in frequency. Since the biases are fixed, intake port wall-wetting effects are minimized. In a second test mode that provides a qualitative assessment, the perturbation is achieved by applying an alternating fuel bias multiplier to every engine cylinder, with the engine operating at a fixed speed and load setting that is of interest for diagnostic purposes.
    Type: Application
    Filed: February 13, 2001
    Publication date: August 15, 2002
    Inventor: Peter James Maloney
  • Publication number: 20020104521
    Abstract: An improved engine fuel control detects combustion instability due to the use of high DI fuel during cold start and warm-up and compensates the fuel control for detected combustion instability through temporary enrichment of the delivered air/fuel ratio. The usage of high DI fuel is detected during engine cranking by measuring the time required for the engine speed to increase from a lower reference speed to an upper reference speed, provided the engine run time is less than a calibrated value. A timer is started when the lower reference speed is achieved, and the timer value is compared to a crank time threshold determined as a function of the initial engine coolant temperature.
    Type: Application
    Filed: September 13, 2001
    Publication date: August 8, 2002
    Inventors: Peter James Maloney, In Kwang Yoo, Deog H. Yoo, Andrew D. Herman, Hallett D. Breidenbach, Craig A. Carlson
  • Publication number: 20020095977
    Abstract: An improved engine fuel control detects combustion instability due to the use of high DI fuel during cold start and warm-up and compensates the fuel control for detected combustion instability through temporary enrichment of the delivered air/fuel ratio. The usage of high DI fuel is detected during an engine idle period following starting by monitoring the engine speed to identify an engine speed excursion more than a calibrated percentage below the desired idle speed. The detection method is enabled under specified environmental conditions, provided the engine run time is greater than a specified time and the engine temperature is within a specified range. Additionally, the method is disabled for a prescribed period following commanded load transitions associated with the air conditioning system and the automatic transmission.
    Type: Application
    Filed: September 13, 2001
    Publication date: July 25, 2002
    Inventors: Peter James Maloney, In Kwang Yoo, Andrew D. Herman, Hallett D. Breidenbach, Deog H. Yoo, Craig A. Carlson
  • Publication number: 20020062687
    Abstract: A method of estimating the volumetric efficiency of an internal combustion engine having independent intake and exhaust cam phase variation, compensates a nominal or base estimate of the volumetric efficiency in two successive stages: an intake stage, and an exhaust stage. The intake stage compensates for the effects of intake cam variation, using the base volumetric efficiency estimate as a starting point; and the exhaust stage compensates for the effects of exhaust cam variation, using the output of the intake stage as a starting point. The volumetric efficiency so compensated is then used to accurately compute the mass intake airflow for engine control purposes.
    Type: Application
    Filed: November 30, 2000
    Publication date: May 30, 2002
    Inventors: Dennis C. Reed, Peter James Maloney, Jeffrey M. Pfeiffer
  • Patent number: 6393903
    Abstract: A method of estimating the volumetric efficiency of an internal combustion engine having independent intake and exhaust cam phase variation, compensates a nominal or base estimate of the volumetric efficiency in two successive stages: an intake stage, and an exhaust stage. The intake stage compensates for the effects of intake cam variation, using the base volumetric efficiency estimate as a starting point; and the exhaust stage compensates for the effects of exhaust cam variation, using the output of the intake stage as a starting point. The volumetric efficiency so compensated is then used to accurately compute the mass intake airflow for engine control purposes.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: May 28, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Dennis C. Reed, Peter James Maloney, Jeffrey M. Pfeiffer
  • Patent number: 6293267
    Abstract: An improved control methodology for an engine control valve, in which the valve is positioned in response to a commanded flow rate of the controlled medium. The method involves a valve characterization procedure in which the actual flow rate is measured for various combinations of valve position and pressure ratio across the valve, subject to a standard set of upstream pressure and temperature values. This results in a table of valve position in terms of pressure ratio and standard flow rate—that is, flow rate under the standard upstream pressure and temperature values. In operation, a controller addresses the table to obtain the desired valve position as a function of a determined pressure ratio across the valve, and a desired standard flow rate determined based on the commanded flow rate and the pressure and temperature of the controlled medium upstream of the valve, relative to the standard pressure and temperature values.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: September 25, 2001
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, Peter James Maloney
  • Patent number: 6233922
    Abstract: An improved closed-loop feedback fuel control with a model-based A/F ratio estimator, wherein the estimator, controller and portions of the model are updated on a fixed time interval basis, thereby minimizing the impact of the control on event-based throughput. Engine transport delays and oxygen sensor dynamics are modeled to estimate the sensed A/F ratio, and the estimate is compared with the sensed A/F ratio to adaptively adjust the model and to develop a closed-loop adjustment of the commanded fuel amount. The engine transport delay model is carried out on an engine event basis, but the sensor dynamics model is carried out on a time basis to accurately reflect the analog nature of the sensor. The estimator and the controller are also carried out on a time basis to reduce throughput requirements at higher engine speeds, and the control gain is scheduled to account for differences between the engine event and time update rates.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: May 22, 2001
    Assignee: Delphi Technologies, Inc.
    Inventor: Peter James Maloney
  • Patent number: 6016460
    Abstract: An improved engine control utilizes a model-based technique to obtain an accurate estimate of barometric pressure with significantly reduced calibration time and effort. A mathematical model of mass air flow through the engine intake system is used to estimate the pressure ratio across the intake system as a function of mass air flow, the effective intake area, and the intake air pressure and temperature. The barometric pressure is then determined from the estimated ratio, and used in the calculation of various gas flows for control purposes. The mass air flow information may be provided by a mass air flow sensor, or alternatively, may be determined based on engine flow rate estimations. Because the estimation is model-based, no special calibration is needed to ensure accuracy at high altitudes.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: January 18, 2000
    Assignee: General Motors Corporation
    Inventors: Peter M. Olin, Peter James Maloney
  • Patent number: 6003496
    Abstract: Transient internal combustion engine fueling control with reduced calibration burden and increased precision through application of a convection model to estimate the mass transfer of fuel between cylinder intake gasses and intake system components primarily as a function of fuel film temperature and gas flow across fuel film on such components. The convection model applies potential/flow conditions in proximity to fuel film on intake components of an engine cylinder to predict the depletion of the fuel film and generates an impact factor representing the fraction of injected fuel impacting intake system components in a manner providing fuel control stability. The convection model applies an intake valve temperature estimate generated simply as a function of air mass flow rate through the intake system to be used in the calculation of the film convection parameters.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: December 21, 1999
    Assignee: General Motors Corporation
    Inventor: Peter James Maloney
  • Patent number: 5931140
    Abstract: An internal combustion engine system is reticulated into an exhaustive network of interdependent temperature nodes and heat transfer branches for estimating thermal states at various nodes as required in engine control and diagnostic operations. All material heat transfer processes of each node of interest in engine control and diagnostics are modeled with additional nodes and their respective heat transfer processes added as necessary for a comprehensive analysis of all thermal dependencies, resulting in a precise, generic, portable thermal model for each relevant engine system temperature node.
    Type: Grant
    Filed: May 22, 1997
    Date of Patent: August 3, 1999
    Assignee: General Motors Corporation
    Inventor: Peter James Maloney
  • Patent number: 5753805
    Abstract: An internal combustion engine system includes a plurality of pneumatic elements including pneumatic resistances, pneumatic capacitances, and pneumatic sources. A pneumatic state model determines a pressure rate of change and pressure for certain areas of the internal combustion engine system designated as pneumatic nodes from selected flows of gas mass associated with pneumatic elements coupled to the certain areas.
    Type: Grant
    Filed: December 2, 1996
    Date of Patent: May 19, 1998
    Assignee: General Motors Corporation
    Inventor: Peter James Maloney