Patents by Inventor Peter John Mahon

Peter John Mahon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7382600
    Abstract: A charge storage device comprising: a first electrode; a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connect to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: June 3, 2008
    Assignee: CAP-XX Limited
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Anthony Michael Vassallo, Philip Andrew Jones, Sarkis Keshishian, Anthony Gaetano Pandolfo
  • Patent number: 7095603
    Abstract: An electrode for an energy storage device, including a substrate of at least one metal that forms a native oxide layer; and a treated layer formed on the substrate from the native oxide layer, the treated layer having a resistance that is less than the resistance of a native oxide layer. In some embodiments, the treated layer possesses at least one of the following properties: includes one or more dopants, is thinner than the native oxide layer, has a carbon coating that is applied to the treated layer which improved adhesion characteristics, and others. Further, there is an energy storage device having two or more of such electrodes, wherein the device has a low initial ESR and/or a low ESR at various intervals. Moreover, disclosed is a low resistance metal including a substrate of at least one metal that forms a native oxide layer; and a treated layer formed on the substrate from the native oxide layer, the treated layer having a resistance that is less than the resistance of a native oxide layer.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: August 22, 2006
    Assignee: Energy Storage Systems PTY LTD
    Inventors: Peter John Mahon, Clodoveo Simone Sacchetta, Calum John Drummond, Phillip Brett Aitchison
  • Patent number: 7009833
    Abstract: A charge storage device comprising: a first electrode, a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connection to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: March 7, 2006
    Assignee: Energy Storage Systems Pty. Ltd.
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Anthony Michael Vassallo, Philip Andrew Jones, Sarkis Keshishian, Anthony Gaetano Pandolfo
  • Patent number: 6998822
    Abstract: A power supply (1) for a pulsed load (2) includes a first energy storage device in the form of a battery (3) which is in parallel with a second energy storage device in the form of a supercapacitor (4). Battery (3) and supercapacitor (4) are respectively modelled as: an ideal battery (7) in series with an internal resistance (8); and an ideal capacitor (9) in series with an equivalent series resistance (ESR) (10). Through use of a supercapacitor (4) having a low ESR with respect to the resistance (8), the power supply (1) facilitates continuity of supply to load (2). That is, during peak demand more of the load current will be supplied by supercapacitor (4) due to the lower ESR. Moreover, during times of lower load current demands the battery recharges the supercapacitor. This reduces the peak current needed to be provided by the battery and thereby improves battery longevity.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: February 14, 2006
    Assignee: Energy Storage Systems PTY LTD
    Inventors: Geoffrey Alan Turner, George Lange Paul, Sarkis Keshishian, Peter John Mahon
  • Patent number: 6944010
    Abstract: A charge storage device (1) includes a sealed prismatic housing (2). Two opposed folded rectangular aluminium electrodes (3, 4) are disposed within housing (2) and connected to respective metal terminals (5, 6) for allowing external electrical connection to the electrodes. A porous, electronically insulating separator material, e.g. Soluporâ„¢, sheet separator (7) is disposed intermediate electrodes (3, 4) for maintaining those electrodes in a fixed spaced apart configuration. An electrolyte (not shown) is also disposed intermediate the electrodes. Collecting means in the form of a scavenging agent is grafted to separator (7) for sequestering one or more predetermined contaminants from the housing.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: September 13, 2005
    Assignee: Energy Storage Systems PTY Ltd.
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Sarkis Keshishian
  • Patent number: 6920034
    Abstract: A charge storage device comprising: a first electrode; a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connection to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: July 19, 2005
    Assignee: Energy Storage Systems PTY LTD
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Anthony Michael Vassallo, Philip Andrew Jones, Sarkis Keshishian, Anthony Gaetano Pandolfo
  • Patent number: 6836097
    Abstract: A power supply (1) for a pulsed load (2) includes a first energy storage device in the form of a battery (3) which is in parallel with a second energy storage device in the form of a supercapacitor (4). Battery (3) and supercapacitor (4) are respectively modelled as: an ideal battery (7) in series with an internal resistance (8); and an ideal capacitor (9) in series with an equivalent series resistance (ESR) (10). Through use of a supercapacitor (4) having a low ESR with respect to the resistance (8), the power supply (1) facilitates continuity of supply to load (2). That is, during peak demand more of the load current will be supplied by supercapacitor (4) due to the lower ESR. Moreover, during times of lower load current demands the battery recharges the supercapacitor. This reduces the peak current needed to be provided by the battery and thereby improves battery longevity.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: December 28, 2004
    Assignee: Energy Storage Systems PTY LTD
    Inventors: Geoffrey Alan Turner, George Lange Paul, Sarkis Keshishian, Peter John Mahon
  • Publication number: 20040095098
    Abstract: A power supply (1) for a pulsed load (2) includes a first energy storage device in the form of a battery (3) which is in parallel with a second energy storage device in the form of a supercapacitor (4). Battery (3) and supercapacitor (4) are respectively modelled as: an ideal battery (7) in series with an internal resistance (8); and an ideal capacitor (9) in series with an equivalent series resistance (ESR) (10). Through use of a supercapacitor (4) having a low ESR with respect to the resistance (8), the power supply (1) facilitates continuity of supply to load (2). That is, during peak demand more of the load current will be supplied by supercapacitor (4) due to the lower ESR. Moreover, during times of lower load current demands the battery recharges the supercapacitor. This reduces the peak current needed to be provided by the battery and thereby improves battery longevity.
    Type: Application
    Filed: April 10, 2003
    Publication date: May 20, 2004
    Inventors: Geoffrey Alan Turner, George Lange Paul, Sarkis Keshishian, Peter John Mahon
  • Publication number: 20040032698
    Abstract: A charge storage device comprising: a first electrode; a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connection to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
    Type: Application
    Filed: August 7, 2003
    Publication date: February 19, 2004
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Anthony Michael Vassallo, Philip Andrew Jones, Sarkis Keshishian, Anthony Gaetano Pandolfo
  • Patent number: 6631072
    Abstract: A charge storage device comprising: a first electrode; a second electrode being opposed to and spaced apart from the first electrode; a porous separator disposed between the electrodes; a sealed package for containing the electrodes, the separator and an electrolyte in which the electrodes are immersed; and a first terminal and a second terminal being electrically connected to the first electrode and the second electrode respectively and both extending from the package to allow external electrical connection to the respective electrodes, wherein the gravimetric FOM of the device is greater than about 2.1 Watts/gram.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: October 7, 2003
    Assignee: Energy Storage Systems PTY LTD
    Inventors: George Lange Paul, Rory Albert James Pynenburg, Peter John Mahon, Anthony Michael Vassallo, Philip Andrew Jones, Sarkis Keshishian, Anthony Gaetano Pandolfo