Patents by Inventor Peter John Statham

Peter John Statham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10354414
    Abstract: A computer-implemented method of image processing for materials analysis is provided. At least three image datasets are obtained, these representing intensity values of image pixels and being in common spatial registration. The image datasets are processed so as to assign a comparison measure to each pair of image datasets, the comparison measure for a given pair of image datasets being representative of the difference between the spatial intensity information within the pair. A number of image datasets are then selected using the comparison measures. A color difference measure is defined which represents the difference between pairs of colors of a color set. Colors are assigned to the selected image datasets such that pairs of the selected image datasets which have substantially different spatial intensity information are assigned respective colors which have a substantially different color difference measure.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: July 16, 2019
    Assignee: Oxford Instruments Nanotehnology Tools Limited
    Inventor: Peter John Statham
  • Patent number: 8421027
    Abstract: A charged particle analyzer (1) comprises a first non-imaging electrostatic lens (8, 9) for receiving charged particles having divergent, trajectories and for converting the said trajectories into substantially parallel trajectories. At least one planar filter (10) is provided for receiving the charged particles having the substantially parallel trajectories and for filtering the charged particles in accordance with their respective energies. A second non-imaging electrostatic lens (11) receives the energy filtered charged particles and selectively modifies their trajectories as a function of their energies. A charged particle detector (12) then receives the charged particles in accordance with their selectively modified trajectories.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 16, 2013
    Assignee: Oxford Instruments Nanotechnology Tools Limited
    Inventors: Ian Richard Barkshire, Peter John Statham, Marcus Jacka
  • Patent number: 8346521
    Abstract: A method of determining the feasibility of a proposed structure analysis process is disclosed. The process involved the electron beam excitation of x-rays from a multi-layered structure. The method comprises generating predicted x-ray data represents the x-ray excitation response of the multi-layered structure according to one or more sets of process conditions. The x-ray data are generated using structure data defining the structure and composition of the layers. The effects upon the x-ray data of changes to the structure data are then analyzed in accordance with one or more predetermined feasibility criteria, so as to determine the feasibility of performing the proposed structure analysis process upon the multi-layered structure.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: January 1, 2013
    Assignee: Oxford Instruments Nanotechnology Tools Limited
    Inventors: Peter John Statham, Charles Penman
  • Patent number: 8222598
    Abstract: A method and apparatus for quantitative analysis of a material in which an electron beam is caused to impinge upon the material are described. The method comprises detecting low loss electrons (LLEs) received from a first region of the material due to interaction with the electron beam and generating corresponding LLE data. The method further comprises detecting x-rays received from a second region of the material due to interaction with the electron beam and generating corresponding x-ray data, wherein the first and second regions overlap, and analysing the LLE data together with the x-ray data so as to generate compositional data representative of the composition of the first region.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: July 17, 2012
    Assignee: Oxford Instruments Analytical Limited
    Inventors: Peter John Statham, Ian Richard Barkshire
  • Patent number: 8065094
    Abstract: A method is provided of calculating the structure of an inhomogeneous sample in which an electron beam is used to cause excitation of x-rays from the sample under known conditions of beam energy and geometry with respect to the sample. Notably the beam current is unknown. Measured x-ray intensity data for the sample corresponding to one or more sets of beam conditions and beam currents are firstly obtained, together with comparative x-ray intensity data for samples having known structures. A beam current factor for each beam condition is estimated and effective x-ray intensity data for each of the sets of conditions are then calculated using the measured and comparative x-ray intensity data and the beam current factor. The structure of the sample is then calculated for each of the sets of conditions using the effective x-ray intensity data. Predicting x-ray intensity data are produced corresponding to the calculated structure and compared with the effective x-ray intensity data.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: November 22, 2011
    Assignee: Oxford Instruments Nonotechnology Tools Unlimited
    Inventor: Peter John Statham
  • Publication number: 20110129066
    Abstract: A method and apparatus for quantitative analysis of a material in which an electron beam is caused to impinge upon the material are described. The method comprises detecting low loss electrons (LLEs) received from a first region of the material due to interaction with the electron beam and generating corresponding LLE data. The method further comprises detecting x-rays received from a second region of the material due to interaction with the electron beam and generating corresponding x-ray data, wherein the first and second regions overlap, and analysing the LLE data together with the x-ray data so as to generate compositional data representative of the composition of the first region.
    Type: Application
    Filed: June 20, 2008
    Publication date: June 2, 2011
    Inventors: Peter John Statham, Ian Richard Barkshire
  • Publication number: 20100163725
    Abstract: A charged particle analyser (1) comprises a first non-imaging electrostatic lens (8, 9) for receiving charged particles having divergent, trajectories and for converting the said trajectories into substantially parallel trajectories. At least one planar filter (10) is provided for receiving the charged particles having the substantially parallel trajectories and for filtering the charged particles in accordance with their respective energies. A second non-imaging electrostatic lens (11) receives the energy filtered charged particles and selectively modifies their trajectories as a function of their energies. A charged particle detector (12) then receives the charged particles in accordance with their selectively modified trajectories.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 1, 2010
    Inventors: Ian Richard Barkshire, Peter John Statham, Marcus Jacka
  • Publication number: 20100030488
    Abstract: A method is provided of calculating the structure of an inhomogeneous sample in which an electron beam is used to cause excitation of x-rays from the sample under known conditions of beam energy and geometry with respect to the sample. Notably the beam current is unknown. Measured x-ray intensity data for the sample corresponding to one or more sets of beam conditions and beam currents are firstly obtained, together with comparative x-ray intensity data for samples having known structures. A beam current factor for each beam condition is estimated and effective x-ray intensity data for each of the sets of conditions are then calculated using the measured and comparative x-ray intensity data and the beam current factor. The structure of the sample is then calculated for each of the sets of conditions using the effective x-ray intensity data. Predicting x-ray intensity data are produced corresponding to the calculated structure and compared with the effective x-ray intensity data.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 4, 2010
    Inventor: Peter John Statham
  • Publication number: 20100017172
    Abstract: A method of determining the feasibility of a proposed structure analysis process is disclosed. The process involved the electron beam excitation of x-rays from a multi-layered structure. The method comprises generating predicted x-ray data represents the x-ray excitation response of the multi-layered structure according to one or more sets of process conditions. The x-ray data are generated using structure data defining the structure and composition of the layers. The effects upon the x-ray data of changes to the structure data are then analysed in accordance with one or more predetermined feasibility criteria, so as to determine the feasibility of performing the proposed structure analysis process upon the multi-layered structure.
    Type: Application
    Filed: May 16, 2007
    Publication date: January 21, 2010
    Applicant: Oxford Instruments Analytical Limited
    Inventors: Peter John Statham, Charles Penman
  • Patent number: 7595489
    Abstract: A method of identifying a material using an x-ray emission characteristic is provided. X-ray data representing a monitored x-ray emission characteristic is obtained from a specimen in response to an incident energy beam. A dataset is also obtained, this comprising composition data of a plurality of materials. The material of the specimen is contained within the dataset. Predicted x-ray data are calculated for each of the materials in the dataset using the composition data. The obtained and the predicted x-ray data are compared and the likely identity of the material of the specimen is determined, based upon the comparison.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: September 29, 2009
    Assignee: Oxford Instruments Analytical Limited
    Inventor: Peter John Statham
  • Patent number: 7533000
    Abstract: A method of analyzing a dataset of spectra is provided in which each spectrum has a count value for each of a number of parameter values within a parameter range. The method is for identifying one or more parameter values that exhibit a significant variation within the dataset. A dataset of spectra is obtained and a statistical analysis is applied to the count values for each of the parameter values. The result of the analysis for each parameter value is a function of the variation in the count values. A spectrum that is representative of at least part of the dataset of spectra is then displayed together with the results of the statistical analysis. A corresponding computer program and system for performing the method are also disclosed.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: May 12, 2009
    Assignee: Oxford Instruments Analytical Limited
    Inventors: Peter John Statham, Charles Penman
  • Publication number: 20080027676
    Abstract: A method of analyzing a dataset of spectra is provided in which each spectrum has a count value for each of a number of parameter values within a parameter range. The method is for identifying one or more parameter values that exhibit a significant variation within the dataset. A dataset of spectra is obtained and a statistical analysis is applied to the count values for each of the parameter values. The result of the analysis for each parameter value is a function of the variation in the count values. A spectrum that is representative of at least part of the dataset of spectra is then displayed together with the results of the statistical analysis. A corresponding computer program and system for performing the method are also disclosed.
    Type: Application
    Filed: July 28, 2006
    Publication date: January 31, 2008
    Applicant: OXFORD INSTRUMENTS ANALYTICAL LIMITED
    Inventors: Peter John Statham, Charles Penman