Patents by Inventor Peter K. Moon

Peter K. Moon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9984922
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: May 29, 2018
    Assignee: Intel Corporation
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Publication number: 20160372366
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Inventors: Jun HE, Kevin J. FISCHER, Ying ZHOU, Peter K. MOON
  • Patent number: 9437545
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: September 6, 2016
    Assignee: Intel Corporation
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Publication number: 20150097292
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Jun HE, Kevin J. FISCHER, Ying ZHOU, Peter K. MOON
  • Patent number: 8928125
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 6, 2015
    Assignee: Intel Corporation
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Publication number: 20120007242
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Patent number: 8058710
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: November 15, 2011
    Assignee: Intel Corporation
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Patent number: 7629268
    Abstract: In one embodiment, an apparatus comprises a first layer having at least one interconnect formed in an interlayer dielectric (ILD), a second layer formed over the first layer having a second at least one interconnect, a third layer formed over the second layer, the third layer defining at least one air gap between the second at least one interconnect and the third layer, and at least one shunt selectively covering the first and second at least one interconnects. In another embodiment, a method comprises forming a first layer comprising an ILD and a first at least one interconnect, forming a second layer over the first layer, the second layer having a second at least one interconnect, depositing at least one shunt over the first and second at least one interconnects, forming a third layer over the second layer, and evaporating a portion of the second layer to create at least one air gap between the second at least one interconnect and the third layer.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: December 8, 2009
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Peter K. Moon
  • Patent number: 7586196
    Abstract: In one embodiment, an apparatus comprises a first layer having at least one interconnect formed in an interlayer dielectric (ILD), a second layer formed over the first layer having a second at least one interconnect, a third layer formed over the second layer, the third layer defining at least one air gap between the second at least one interconnect and the third layer, and at least one shunt selectively covering the first and second at least one interconnects. In another embodiment, a method comprises forming a first layer comprising an ILD and a first at least one interconnect, forming a second layer over the first layer, the second layer having a second at least one interconnect, depositing at least one shunt over the first and second at least one interconnects, forming a third layer over the second layer, and evaporating a portion of the second layer to create at least one air gap between the second at least one interconnect and the third layer.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: September 8, 2009
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Peter K. Moon
  • Publication number: 20090117733
    Abstract: The present invention includes a method of providing a substrate; sequentially forming a seed layer over the substrate and forming a protection layer over the seed layer; and sequentially removing the protection layer and forming a conductor over the seed layer. The present invention further includes a structure having a substrate, the substrate having a device; an insulator disposed over the substrate, the insulator having an opening, the opening disposed over the device; a barrier layer disposed over the opening; a seed layer disposed over the barrier layer; and a protection layer disposed over the seed layer.
    Type: Application
    Filed: December 24, 2008
    Publication date: May 7, 2009
    Inventors: Valery M. Dubin, Peter K. Moon
  • Patent number: 7525196
    Abstract: The present invention includes a method of providing a substrate; sequentially forming a seed layer over the substrate and forming a protection layer over the seed layer; and sequentially removing the protection layer and forming a conductor over the seed layer. The present invention further includes a structure having a substrate, the substrate having a device; an insulator disposed over the substrate, the insulator having an opening, the opening disposed over the device; a barrier layer disposed over the opening; a seed layer disposed over the barrier layer; and a protection layer disposed over the seed layer.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: April 28, 2009
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Peter K. Moon
  • Publication number: 20080179748
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Application
    Filed: March 28, 2008
    Publication date: July 31, 2008
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Patent number: 7402519
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: July 22, 2008
    Assignee: Intel Corporation
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Patent number: 7326981
    Abstract: Embodiments of the invention provide a method for producing ferroelectric polymer devices (FPMDs) employing conditions that avoid or reduce detrimental impact on the ferroelectric polymer film. For one embodiment, a damascene patterning metallization technique is used. For one embodiment a first metal layer is deposited on a substrate to form the bottom electrode for the FPMD. The first metal layer is capped with a selectively deposited diffusion barrier. A layer of ferroelectric polymer film is then deposited on the first conductive layer. The ferroelectric polymer film is planarized. A second metal layer is deposited on the ferroelectric polymer film layer to form the top electrode of the FPMD. The second metal layer is deposited such that the ferroelectric polymer film is not substantially degraded. For various alternative embodiments the various component processes may be accomplished at temperatures far below those employed in a conventional damascene patterning metallization process.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: February 5, 2008
    Assignee: Intel Corporation
    Inventors: Makarem A. Hussein, Ebrahim Andideh, Peter K. Moon, Daniel C. Diana
  • Patent number: 7304388
    Abstract: In one embodiment, an apparatus comprises a first layer having at least one interconnect formed in an interlayer dielectric (ILD), a second layer formed over the first layer having a second at least one interconnect, a third layer formed over the second layer, the third layer defining at least one air gap between the second at least one interconnect and the third layer, and at least one shunt selectively covering the first and second at least one interconnects. In another embodiment, a method comprises forming a first layer comprising an ILD and a first at least one interconnect, forming a second layer over the first layer, the second layer having a second at least one interconnect, depositing at least one shunt over the first and second at least one interconnects, forming a third layer over the second layer, and evaporating a portion of the second layer to create at least one air gap between the second at least one interconnect and the third layer.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: December 4, 2007
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Peter K. Moon
  • Patent number: 7239019
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: July 3, 2007
    Assignee: Intel Corporation
    Inventors: Jihperng Leu, Grant M. Kloster, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Patent number: 7223694
    Abstract: A method of depositing a metal cladding on conductors in a damascene process is described. The potential between, for instance, cobalt ions in electroless solution and the surface of an ILD between the conductors is adjusted so as to repel the metal from the ILD.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: May 29, 2007
    Assignee: Intel Corporation
    Inventors: Chin-Chang Cheng, Valery M. Dubin, Peter K. Moon
  • Patent number: 7078754
    Abstract: Embodiments of the invention provide a method for producing ferroelectric polymer devices (FPMDs) employing conditions that avoid or reduce detrimental impact on the ferroelectric polymer film. For one embodiment, a damascene patterning metallization technique is used. For one embodiment a first metal layer is deposited on a substrate to form the bottom electrode for the FPMD. The first metal layer is capped with a selectively deposited diffusion barrier. A layer of ferroelectric polymer film is then deposited on the first conductive layer. The ferroelectric polymer film is planarized. A second metal layer is deposited on the ferroelectric polymer film layer to form the top electrode of the FPMD. The second metal layer is deposited such that the ferroelectric polymer film is not substantially degraded. For various alternative embodiments the various component processes may be accomplished at temperatures far below those employed in a conventional damascene patterning metallization process.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: July 18, 2006
    Assignee: Intel Corporation
    Inventors: Makarem A. Hussein, Ebrahim Andideh, Peter K. Moon, Daniel C. Diana
  • Patent number: 7060617
    Abstract: The present invention includes a method of providing a substrate; sequentially forming a seed layer over the substrate and forming a protection layer over the seed layer; and sequentially removing the protection layer and forming a conductor over the seed layer. The present invention further includes a structure having a substrate, the substrate having a device; an insulator disposed over the substrate, the insulator having an opening, the opening disposed over the device; a barrier layer disposed over the opening; a seed layer disposed over the barrier layer; and a protection layer disposed over the seed layer.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: June 13, 2006
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Peter K. Moon
  • Patent number: 7018918
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: March 28, 2006
    Assignee: Intel Corporation
    Inventors: Grant M. Kloster, Kevin P. O'brien, Michael D. Goodner, Jihperng Leu, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns