Patents by Inventor Peter Kazansky

Peter Kazansky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929586
    Abstract: A method of delivering optical energy to a substrate comprises applying a temporal group of optical pulses to a region of the substrate, wherein the temporal group comprises twenty or fewer pulses of a femtosecond pulse duration, arranged as a first subgroup of pulses comprising up to three pulses followed by a second subgroup of pulses comprising the remaining pulses in the temporal group; and wherein energies of the pulses are controlled such that pulses in the first subgroup have a first energy per pulse and pulses in a second subgroup of pulses have a second energy per pulse which is less than the first energy.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: March 12, 2024
    Assignee: University of Southampton
    Inventors: Masaaki Sakakura, Yanhao Yu, Peter Kazansky, Lei Wang
  • Patent number: 11802993
    Abstract: An optical element for modifying an incident laser beam propagated through the optical element from an input face to an output face via a geometric phase birefringent effect, the optical element comprising: a substrate of a transparent amorphous material with an input face and an opposite output face; and a structural modification in a volume of the substrate between the input face and output face comprising a plurality of randomly positioned nanostructures; wherein each nanostructure has a oblate spheroidal shape with an elliptical cross section in a plane parallel to the input face, the elliptical cross-section having a minor axis substantially not larger than 30 nm and a major axis greater than the minor axis, and each nanostructure having a length in a direction perpendicular to the input face which is substantially not larger than 100 nm.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: October 31, 2023
    Assignee: University of Southampton
    Inventors: Rokas Drevinskas, Peter Kazansky, Ausra Cerkauskaite
  • Publication number: 20220268983
    Abstract: A method of fabricating an optical element comprises: providing a substrate (1, 50) of a transparent material in which is to be formed a plurality of birefringent nanostructures spaced apart in plane substantially parallel to a surface of the substrate in a first direction (2) by a distance X and in a second direction (3) by a distance Y; generating from the output of a source (20) of femtosecond laser pulses a laser beam group comprising a plurality of focused seeding beams (44) having a circular polarisation and spaced apart along a line by the distance X and a focused writing beam (26) having a non-circular polarisation and spaced apart from one of the seeding beams by the distance Y or the distance X; directing the laser beam group onto the surface of the substrate at a first position and applying one or more femtosecond laser pulses from each beam to corresponding volumes in the substrate; repeatedly translating the laser beam group relative to the substrate parallel to the line of seeding beams and alon
    Type: Application
    Filed: August 27, 2020
    Publication date: August 25, 2022
    Inventors: Masaaki SAKAKURA, Lei WANG, Peter KAZANSKY, Yanhao YU, Yuhao LEI
  • Publication number: 20220111470
    Abstract: A method of fabricating an optical element comprises: providing a substrate of a transparent material; applying a plurality of circularly polarised focused femtosecond laser pulses to a volume within the substrate to create substantially spherical nanopores in the volume; and applying at least one and not more than ten non-circularly polarised focused femtosecond laser pulses to the volume to transform the spherical nanopores into oblate spheroidal nanopores.
    Type: Application
    Filed: November 26, 2019
    Publication date: April 14, 2022
    Inventors: Peter KAZANSKY, Masaaki SAKAKURA, Lei WANG
  • Publication number: 20220009028
    Abstract: A method of fabricating an optical element comprises providing a substrate of a transparent material; and applying one or more focused femtosecond pulses of laser light with an elliptical polarisation to a volume within the substrate to create at least one nanostructure in the volume.
    Type: Application
    Filed: November 26, 2019
    Publication date: January 13, 2022
    Inventors: Peter KAZANSKY, Masaaki SAKAKURA, Lei WANG
  • Publication number: 20210265798
    Abstract: A method of delivering optical pulses to a substrate comprises directing a focused beam from a source of optical pulses along a propagation direction onto a substrate; moving the substrate relative to the beam in a plane substantially orthogonal to the propagation direction and continuously along a first direction that includes spaced apart row locations on the substrate, and delivering a plurality of optical pulses from source as the beam reaches each row location; and between delivering the optical pulses at consecutive row locations, moving the beam relative to the substrate in one or more successive discrete movements along a second direction in the plane orthogonal to the first direction, to direct the beam to one or more spaced apart column locations on the substrate, and delivering a plurality of optical pulses from the source at each column location.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 26, 2021
    Inventors: Masaaki SAKAKURA, Yanhao YU, Peter KAZANSKY, Lei WANG
  • Publication number: 20210265797
    Abstract: A method of delivering optical energy to a substrate comprises applying a temporal group of optical pulses to a region of the substrate, wherein the temporal group comprises twenty or fewer pulses of a femtosecond pulse duration, arranged as a first subgroup of pulses comprising up to three pulses followed by a second subgroup of pulses comprising the remaining pulses in the temporal group; and wherein energies of the pulses are controlled such that pulses in the first subgroup have a first energy per pulse and pulses in a second subgroup of pulses have a second energy per pulse which is less than the first energy.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 26, 2021
    Inventors: Masaaki SAKAKURA, Yanhao YU, Peter KAZANSKY, Lei WANG
  • Publication number: 20200408953
    Abstract: An optical element for modifying an incident laser beam propagated through the optical element from an input face to an output face via a geometric phase birefringent effect, the optical element comprising: a substrate of a transparent amorphous material with an input face and an opposite output face; and a structural modification in a volume of the substrate between the input face and output face comprising a plurality of randomly positioned nanostructures; wherein each nanostructure has a oblate spheroidal shape with an elliptical cross section in a plane parallel to the input face, the elliptical cross-section having a minor axis substantially not larger than 30 nm and a major axis greater than the minor axis, and each nanostructure having a length in a direction perpendicular to the input face which is substantially not larger than 100 nm.
    Type: Application
    Filed: February 13, 2019
    Publication date: December 31, 2020
    Inventors: Rokas DREVINSKAS, Peter KAZANSKY, Ausra CERKAUSKAITE
  • Patent number: 10156669
    Abstract: This patent describes an optical element, which converts incident linearly or circularly polarized visible light into radially or azimuthally polarized light beam. The polarization converter is a single optical element, produced by direct laser writing technique in an optically transparent substrate. Direct laser writing based on ultra-short pulsed laser radiation forms form birefringence self-assembled nanogratings in optically transparent material, such as fused silica. The period of gratings is smaller than wavelengths of a visible light.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 18, 2018
    Assignee: University of Southampton
    Inventors: Martynas Beresna, Peter Kazansky
  • Publication number: 20140153097
    Abstract: This patent describes an optical element, which converts incident linearly or circularly polarized visible light into radially or azimuthally polarized light beam. The polarization converter is a single optical element, produced by direct laser writing technique in an optically transparent substrate. Direct laser writing based on ultra-short pulsed laser radiation forms form birefringence self-assembled nanogratings in optically transparent material, such as fused silica. The period of gratings is smaller than wavelengths of a visible light.
    Type: Application
    Filed: May 3, 2012
    Publication date: June 5, 2014
    Inventors: Martynas Beresna, Peter Kazansky