Patents by Inventor Peter Ketteridge

Peter Ketteridge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100238958
    Abstract: A system is provided for providing high power, wavelength tunable, laser radiation, the system comprising: a plurality of seeder sources, each the source of the plurality having a different seeder wavelength; a Ytterbium doped amplifier chain, receiving radiation from the plurality of seeder sources and at least one pump source; a second harmonic generator communicating with the Ytterbium doped amplifier chain, the second harmonic generator comprising converting radiation of the seeder wavelength into radiation of a second harmonic wavelength; and wherein the second harmonic generator comprises a crystal having a plurality of grating segments, wherein each grating segment converts radiation of a different wavelength.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Applicant: BAE Systems Information and Electronic Systems Integration Inc
    Inventors: Daniel Creeden, Peter A. Budni, Peter A. Ketteridge
  • Patent number: 7787724
    Abstract: Techniques for generating terahertz (THz) radiation are provided in which each nonlinear crystal in an array of such crystals is coupled to one or more corresponding waveguides such that any THz radiation generated in any single crystal is coupled into that crystal's THz waveguide structure. After the THz radiation is generated in the crystals and coupled into the waveguides, the individual THz signals may be coherently combined to form a single THz signal (non-coherent configurations are provided as well). Crystal-waveguide arrays embodying the techniques can be used to implement efficient, robust, and compact THz sources suitable for applications such as security screening, medical imaging, quality control and process monitoring in manufacturing operations, and package and container inspection.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 31, 2010
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel Creeden, Peter A. Ketteridge, York E. Young, Rick Thompson
  • Publication number: 20090232462
    Abstract: Techniques for generating terahertz (THz) radiation are provided in which each nonlinear crystal in an array of such crystals is coupled to one or more corresponding waveguides such that any THz radiation generated in any single crystal is coupled into that crystal's THz waveguide structure. After the THz radiation is generated in the crystals and coupled into the waveguides, the individual THz signals may be coherently combined to form a single THz signal (non-coherent configurations are provided as well). Crystal-waveguide arrays embodying the techniques can be used to implement efficient, robust, and compact THz sources suitable for applications such as security screening, medical imaging, quality control and process monitoring in manufacturing operations, and package and container inspection.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Inventors: Daniel Creeden, Peter A. Ketteridge, York E. Young, Rick Thompson
  • Publication number: 20090091820
    Abstract: A terahertz imaging system and method of use including a compact Yb-doped fiber laser-pumped ZGP crystal as a THz source and an uncooled microbolometer array as a detector. According to the present invention, semiconductor lasers are also drive current modulated to produce desired laser pulsewidth, repetition rate and wavelengths needed for DFG THz generation in various non-linear crystals. The fiber-coupled semiconductor lasers provide at least two wavelengths that will produce THz radiation by DFG in non-linear converter. These two wavelengths are combined and amplified in a single Yb fiber amplifier chain. Yb amplifier is staged in continually increasing core diameters to provide significant signal amplification while suppressing deleterious non-linear effects.
    Type: Application
    Filed: February 1, 2008
    Publication date: April 9, 2009
    Inventors: John C. McCarthy, Daniel Creeden, Peter A. Ketteridge
  • Publication number: 20070183467
    Abstract: A laser system having a cooling apparatus is disclosed. The laser system includes a resonator, a gain medium and multiple heat-absorbing discs. The resonator is formed by a first mirror and a second mirror. The gain medium, which is contained within the resonator, is collectively formed by a group of gain medium segments. Each of the gain medium segments is preferably in the shape of a cylindrical disc. The heat-absorbing discs are interleavely disposed among the gain medium segments to provide face cooling for the gain medium segments during the operation of the laser system.
    Type: Application
    Filed: February 3, 2006
    Publication date: August 9, 2007
    Inventor: Peter Ketteridge
  • Patent number: 7227162
    Abstract: A countermeasure device includes an emitter having a surface. A band gap material is integral with the surface of the emitter. A series of apertures are formed in the band gap material. A heat source for heating the emitter is provided proximate to the emitter and may be the metal surface itself. When the emitter is heated, the band gap material, and the apertures therein, allows the emitter to emit photons at predetermined wavelengths.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: June 5, 2007
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John L. Barrett, Peter A. Ketteridge
  • Publication number: 20070057205
    Abstract: A countermeasure device includes an emitter having a surface. A band gap material is integral with the surface of the emitter. A series of apertures are formed in the band gap material. A heat source for heating the emitter is provided proximate to the emitter and may be the metal surface itself. When the emitter is heated, the band gap material, and the apertures therein, allows the emitter to emit photons at predetermined wavelengths.
    Type: Application
    Filed: February 11, 2005
    Publication date: March 15, 2007
    Inventors: John Barrett, Peter Ketteridge
  • Patent number: 7170909
    Abstract: A directly pumped, un-sensitized, holmium, quasi-two level fiber laser is disclosed that is doped with Holmium active ions between 0.1 and 2.0 percent by atomic weight. This yields greater energy efficiency from the laser because up-conversion losses are minimized, mismatches created by sensitizer ions are eliminated by having no sensitizer ions, and thermal loading of the fiber medium of the laser is thereby reduced. In addition, the pump ratio of the fiber laser is 0.9 which yields a very low quantum defect. The low doping percentage of holmium active ions also eliminates any absorption of its own energy because the power of the diode pumping source is sufficient to cause the laser to reach transparency.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: January 30, 2007
    Assignee: Bae Systems Information and Electronic Systems Integration Inc.
    Inventors: Peter A. Budni, Peter A. Ketteridge
  • Publication number: 20070002905
    Abstract: A directly pumped, un-sensitized, holmium, quasi-two level fiber laser is disclosed that is doped with Holmium active ions between 0.1 and 2.0 percent by atomic weight. This yields greater energy efficiency from the laser because up-conversion losses are minimized, mismatches created by sensitizer ions are eliminated by having no sensitizer ions, and thermal loading of the fiber medium of the laser is thereby reduced. In addition, the pump ratio of the fiber laser is 0.9 which yields a very low quantum defect. The low doping percentage of holmium active ions also eliminates any absorption of its own energy because the power of the diode pumping source is sufficient to cause the laser to reach transparency.
    Type: Application
    Filed: May 25, 2004
    Publication date: January 4, 2007
    Inventors: Peter Budni, Peter Ketteridge
  • Publication number: 20060180740
    Abstract: A night vision device includes an emitter having a surface band gap material integral with the surface of the emitter. A structure of uniformly spaced apertures formed by the photon band gap material. A heat source for heating the emitter is provided proximate to the emitter. When the emitter is heated, the emitter causes the photon band gap material to emit photons in the infrared bands of radiation, which have a wavelength between one hundred nanometers and one micrometer. An infrared viewing system is provided for viewing infrared bands of radiation emitted by the emitter and band gap material.
    Type: Application
    Filed: February 11, 2005
    Publication date: August 17, 2006
    Inventors: John Barrett, Peter Ketteridge
  • Publication number: 20050105918
    Abstract: A system for generating an optical signal is provided. The system includes a plurality of light emitting devices. Each light emitting device has an input and an output. The system also includes a combiner having a plurality of inputs and an output. The plurality of inputs of the combiner are coupled to the outputs of the plurality of light emitting devices. The output of the combiner provides a composite signal. The system also includes a control circuit. The control circuit is coupled to the plurality of light emitting devices. The control circuit controls the plurality of light emitting devices to shape the composite signal in time, frequency, and amplitude.
    Type: Application
    Filed: November 14, 2003
    Publication date: May 19, 2005
    Inventor: Peter Ketteridge
  • Patent number: 6829082
    Abstract: The present invention is an amplifier for amplifying an optic signal. The amplifier includes a signal source transmitting the signal, which includes a signal portion in the L-band. The signal first passes into a first signal manipulator. The first signal manipulator is one or more collimators and/or concentrators and, in some embodiments, can include dichroics or optical manipulators known to those skilled in the art. An input pump is aligned to overlap the signal with pump light. From the first signal manipulator, the signal and the pump light intersects the erbium doped crystal, wherein the pump light excites the crystal and the signal impinges the crystal, amplifying the signal.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: December 7, 2004
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Scott D. Setzler, Peter A. Ketteridge, Evan Chicklis, Peter A. Budni
  • Publication number: 20030002136
    Abstract: The present invention is an amplifier for amplifying an optic signal. The amplifier includes a signal source transmitting the signal, which includes a signal portion in the L-band. The signal first passes into a first signal manipulator. The first signal manipulator is one or more collimators and/or concentrators and, in some embodiments, can include dichroics or optical manipulators known to those skilled in the art. An input pump is aligned to overlap the signal with pump light. From the first signal manipulator, the signal and the pump light intersects the erbium doped crystal, wherein the pump light excites the crystal and the signal impinges the crystal, amplifying the signal.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 2, 2003
    Inventors: Scott D. Setzler, Peter A. Ketteridge, Evan Chicklis, Peter A. Budni
  • Publication number: 20020186455
    Abstract: The present invention is an amplifier for amplifying an optical signal. The signal to be amplified passes into and then from a first optical manipulator. The first manipulator is at least one or more collimators and/or concentrators. The amplifier includes an input pump which produces pump light overlapping the optical signal as the signal passes from the first manipulator. The amplifier further includes a plurality of ion-doped crystalline hosts to be excited by the pump light and impinged by the signal. Finally the signal passes through a second manipulator, which is also one or more collimators and/or concentrators, and exits the amplifier.
    Type: Application
    Filed: June 6, 2002
    Publication date: December 12, 2002
    Inventors: Peter A. Ketteridge, Peter A. Budni, Evan Chicklis, Michael P. Schmidt, Scott D. Setzler