Patents by Inventor Peter Klobucar

Peter Klobucar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220055273
    Abstract: A valve-gating injection molding apparatus is disclosed. The valve gating injection molding apparatus has a manifold with a manifold channel extending therethrough and a nozzle coupled to the manifold and having a nozzle channel in fluid communication with the manifold channel A valve pin extends across the manifold and through the nozzle channel. An actuator coupled to the valve pin for translating the valve pin between open and closed positions. A plurality of mold plates forming an enclosure to house the manifold, the plurality of mold plates defining an egress passageway through which the valve pin extends and a diversion chute that intersects the egress passageway at an angle.
    Type: Application
    Filed: December 23, 2019
    Publication date: February 24, 2022
    Inventors: Peter KLOBUCAR, Denis BABIN
  • Patent number: 8985997
    Abstract: A valve bushing having an actuator portion and a pin guiding component is disclosed. The actuator portion has a cup-shaped body with a stepped bore that defines a chamber in which a piston for opening and closing a valve gate disposed, and also defines a transfer bore extending through a base portion of the cup-shaped body. A stand-off member elevates the cup-shaped body from the manifold. The pin guiding component defines a sealing bore that extends between a body portion and a boss that extends rearward from the body portion. The boss is received in the transfer bore of the cup-shaped body to define a thermal transfer area between the pin guiding component and the actuator portion that is spaced apart from the manifold, and the actuator portion is located relative to the pin guiding component by engagement between the pin guiding component and the stand-off member.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 24, 2015
    Assignee: Mold-Masters (2007) Limited
    Inventors: Peter Klobucar, Denis Babin, Fabrice Fairy
  • Publication number: 20130230617
    Abstract: A valve bushing having an actuator portion and a pin guiding component is disclosed. The actuator portion has a cup-shaped body with a stepped bore that defines a chamber in which a piston for opening and closing a valve gate disposed, and also defines a transfer bore extending through a base portion of the cup-shaped body. A stand-off member elevates the cup-shaped body from the manifold. The pin guiding component defines a sealing bore that extends between a body portion and a boss that extends rearward from the body portion. The boss is received in the transfer bore of the cup-shaped body to define a thermal transfer area between the pin guiding component and the actuator portion that is spaced apart from the manifold, and the actuator portion is located relative to the pin guiding component by engagement between the pin guiding component and the stand-off member.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 5, 2013
    Applicant: MOLD-MASTERS (2007) LIMITED
    Inventors: Peter Klobucar, Denis Babin, Fabrice Fairy
  • Patent number: 8414285
    Abstract: One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: April 9, 2013
    Assignee: Mold-Masters (2007) Limited
    Inventors: Valery Ten, Peter Klobucar, Denis Babin
  • Patent number: 8241032
    Abstract: An injection molding apparatus is disclosed having a single level manifold that utilizes a melt splitter. The manifold defines an inlet and a plurality of outlets with at least one upstream melt channel and a plurality of downstream melt channels that are situated between the inlet and the plurality of outlets. The upstream melt channel branches into the plurality of downstream melt channels with the upstream melt channel and each of the downstream melt channels longitudinally extending in the same plane. The melt splitter is at least partially positioned within the upstream melt channel where the upstream melt channel intersects with the plurality of downstream melt channels. The melt splitter divides a melt flow received from the upstream melt channel into substantially equal volumes and then directs each of the substantially equal volumes into a respective one of the plurality of downstream melt channels.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: August 14, 2012
    Assignee: Mold-Masters (2007) Limited
    Inventors: Peter Klobucar, Neil Dewar
  • Publication number: 20120156325
    Abstract: One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 21, 2012
    Applicant: MOLD-MASTERS (2007) LIMITED
    Inventors: Valery Ten, Peter Klobucar, Denis Babin
  • Patent number: 8152513
    Abstract: One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: April 10, 2012
    Assignee: Mold-Masters (2007) Limited
    Inventors: Valery Ten, Peter Klobucar, Denis Babin
  • Publication number: 20110287129
    Abstract: An injection molding apparatus is disclosed having a single level manifold that utilizes a melt splitter. The manifold defines an inlet and a plurality of outlets with at least one upstream melt channel and a plurality of downstream melt channels that are situated between the inlet and the plurality of outlets. The upstream melt channel branches into the plurality of downstream melt channels with the upstream melt channel and each of the downstream melt channels longitudinally extending in the same plane. The melt splitter is at least partially positioned within the upstream melt channel where the upstream melt channel intersects with the plurality of downstream melt channels. The melt splitter divides a melt flow received from the upstream melt channel into substantially equal volumes and then directs each of the substantially equal volumes into a respective one of the plurality of downstream melt channels.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 24, 2011
    Applicant: MOLD-MASTERS (2007) LIMITED
    Inventors: Peter Klobucar, Neil Dewar
  • Patent number: 8062025
    Abstract: An injection molding apparatus includes a manifold defining a manifold channel for receiving pressurized molding material from an upstream source and a nozzle defining a nozzle channel in communication with the manifold channel to define a flow channel. The nozzle is associated with a mold gate of a mold cavity and delivers molding material to the mold gate. A vane, such as that of an impeller or screw, is rotatably disposed in the flow channel upstream of a mold gate. A motor is coupled to the vane and rotates the vane in either direction. Rotation of the impeller or screw can be automatically adjusted by a controller and a sensor that measures pressure, temperature, or other property of the molding material.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 22, 2011
    Assignee: Mold-Masters (2007) Limited
    Inventors: Peter Klobucar, Bruce Catoen, Rhonda Goslinski
  • Patent number: 7972132
    Abstract: A valve gated hot runner nozzle with at least two transition members made of different materials located between a nozzle tip and a mold gate component to provide a thermal transition region. A first transition member in contact with the nozzle tip is less thermally conductive than a second transition member in contact with the mold gate component. The valve pin when in the closed position makes sealing contact with at least the second transition member such that cooling from the mold gate component is transferred to the valve pin to cool the melt in the mold gate area.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: July 5, 2011
    Assignee: Mold-Masters (2007) Ltd
    Inventors: Peter Klobucar, Denis Babin, Bruce Catoen, Scott Gammon
  • Publication number: 20100215795
    Abstract: One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.
    Type: Application
    Filed: October 17, 2008
    Publication date: August 26, 2010
    Applicant: MOLD-MASTERS (2007) LIMITED
    Inventors: Valery Ten, Peter Klobucar, Denis Babin
  • Patent number: 7766647
    Abstract: An injection molding system is disclosed having a self-regulating valve for balancing melt flow. The self-regulating valve includes a control rod configured to balance the melt flow rate through a hot runner system. The self-regulating valve reacts to an injection or melt pressure within the hot runner system and a pre-set force provided by an external force device. The self-regulating valve is an open-loop system as it requires neither a measurement of pressure by a sensor nor feedback from a processor in order to regulate the melt flow. The self-regulating valve mechanically reacts to changes in melt pressure on control surfaces thereof by “bobbing” upwards/downwards to decrease/increase the melt flow accordingly. The self-regulating valve compensates for conditions that affect melt pressure, such as an increase/decrease in melt viscosity, changes in melt temperature, and/or mold cavity size without the use of a processing device.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 3, 2010
    Assignee: Mold-Masters (2007) Limited
    Inventors: Neil Dewar, Vijay Kudchadkar, Peter Klobucar
  • Publication number: 20100159062
    Abstract: An injection molding apparatus includes a manifold defining a manifold channel for receiving pressurized molding material from an upstream source and a nozzle defining a nozzle channel in communication with the manifold channel to define a flow channel. The nozzle is associated with a mold gate of a mold cavity and delivers molding material to the mold gate. A vane, such as that of an impeller or screw, is rotatably disposed in the flow channel upstream of a mold gate. A motor is coupled to the vane and rotates the vane in either direction. Rotation of the impeller or screw can be automatically adjusted by a controller and a sensor that measures pressure, temperature, or other property of the molding material.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: MOLD-MASTERS (2007) LIMITED
    Inventors: Peter Klobucar, Bruce Catoen, Rhonda Goslinski
  • Publication number: 20100092601
    Abstract: A valve gated hot runner nozzle with at least two transition members made of different materials located between a nozzle tip and a mold gate component to provide a thermal transition region. A first transition member in contact with the nozzle tip is less thermally conductive than a second transition member in contact with the mold gate component. The valve pin when in the closed position makes sealing contact with at least the second transition member such that cooling from the mold gate component is transferred to the valve pin to cool the melt in the mold gate area.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 15, 2010
    Applicant: MOLD-MASTERS (2007) LIMITED
    Inventors: Peter Klobucar, Denis Babin, Bruce Catoen, Scott Gammon
  • Patent number: 7678320
    Abstract: A shut-off valve for preventing drool from an injection molding apparatus is provided in a melt channel of a sprue bushing. The shut-off valve includes a fixed member located in the melt channel and a reciprocating member coupled to the fixed member. The reciprocating member is biased toward an extended position in which an inlet of the sprue bushing is blocked thereby. The reciprocating member is movable from the extended position towards a retracted position in which the inlet of the sprue bushing is clear by the force of a melt stream entering the melt channel of the sprue bushing.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: March 16, 2010
    Assignee: Mold-Masters (2007) Limited
    Inventor: Peter Klobucar
  • Patent number: 7658606
    Abstract: An injection molding apparatus includes an injection manifold having an inlet and a melt channel. The manifold melt channel branches to a plurality of melt channel outlets. A hot runner injection nozzle includes an axial melt channel extending along a central axis and communicating with one of the manifold melt channel outlets. The nozzle further includes at least two angled melt channels disposed at an angle to the central axis. At least two nozzle tips are provided, and each includes a nozzle tip melt channel in communication with one of the angled melt channels. A valve pin is disposed at least partially within the axial melt channel coaxially with the central axis and movable within the axial melt channel. Lateral valve pins movable within the nozzle tip melt channels are disposed at an angle to the valve pin. Linkage elements continuously connect the lateral valve pins to the valve pin.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 9, 2010
    Assignee: Mold-Masters (2007) Limited
    Inventors: Peter Klobucar, Denis Babin
  • Patent number: 7618253
    Abstract: One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: November 17, 2009
    Assignee: Mold-Masters (2007) Limited
    Inventors: Valery Ten, Peter Klobucar
  • Publication number: 20090274787
    Abstract: An injection molding system is disclosed having a self-regulating valve for balancing melt flow. The self-regulating valve includes a control rod configured to balance the melt flow rate through a hot runner system. The self-regulating valve reacts to an injection or melt pressure within the hot runner system and a pre-set force provided by an external force device. The self-regulating valve is an open-loop system as it requires neither a measurement of pressure by a sensor nor feedback from a processor in order to regulate the melt flow. The self-regulating valve mechanically reacts to changes in melt pressure on control surfaces thereof by “bobbing” upwards/downwards to decrease/increase the melt flow accordingly. The self-regulating valve compensates for conditions that affect melt pressure, such as an increase/decrease in melt viscosity, changes in melt temperature, and/or mold cavity size without the use of a processing device.
    Type: Application
    Filed: July 8, 2009
    Publication date: November 5, 2009
    Applicant: MOLD-MASTERS (2007) LIMITED
    Inventors: Neil Dewar, Vijay Kudchadkar, Peter Klobucar
  • Patent number: 7559762
    Abstract: An injection molding system is disclosed having a self-regulating valve for balancing melt flow. The self-regulating valve includes a control rod configured to balance the melt flow rate through a hot runner system. The self-regulating valve reacts to an injection or melt pressure within the hot runner system and a pre-set force provided by an external force device. The self-regulating valve is an open-loop system as it requires neither a measurement of pressure by a sensor nor feedback from a processor in order to regulate the melt flow. The self-regulating valve mechanically reacts to changes in melt pressure on control surfaces thereof by “bobbing” upwards/downwards to decrease/increase the melt flow accordingly. The self-regulating valve compensates for conditions that affect melt pressure, such as an increase/decrease in melt viscosity, changes in melt temperature, and/or mold cavity size without the use of a processing device.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: July 14, 2009
    Assignee: Mold-Masters (2007) Limited
    Inventors: Neil Dewar, Vijay Kudchadkar, Peter Klobucar
  • Publication number: 20090104307
    Abstract: One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 23, 2009
    Inventors: Valery Ten, Peter Klobucar