Patents by Inventor Peter Koken

Peter Koken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940521
    Abstract: Disclosed is a medical system (100, 300, 500, 700) comprising: a memory (128) storing machine executable instructions (130); a processor (122) configured for controlling the medical system; and a pilot tone system (106). The pilot tone system comprises a radio frequency system (108) comprising multiple transmit channels (110) and multiple receive channels (112). The multiple transmit channels are configured for each transmitting unique pilot tone (132) signals via multiple transmit coils. The multiple receive channels are configured for receiving multi-channel pilot tone data (134) via multiple receive coils.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 26, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Gunther Leussler, Christian Findeklee, Jan Jakob Meineke, Peter Vernickel, Peter Koken
  • Publication number: 20230417853
    Abstract: The present invention relates to multi-station scan. In order to improve selection of stations, a device is provided for detecting critical stations in a multi-station scan. The device comprises an input unit, a processing unit, and an output unit. The input unit is configured to receive image data taken from a patient lying on a table before start of a diagnostic scan with a magnetic resonance imaging system. The processing unit is configured to analyze the image data of the patient to identify a spatial location of the lungs of the patient to align the spatial location of the lungs of the patient with a planned multi-station scan to identify the critical stations that are potentially affected by a respiratory motion of the patient, and to assign breath-hold to the identified critical stations. The output unit is configured to provide the identified critical stations. Thus, the selection of critical stations can be automatically and consistently satisfied without operator intervention.
    Type: Application
    Filed: March 9, 2022
    Publication date: December 28, 2023
    Inventors: Ulrich Wolfgang Katscher, Peter Koken
  • Publication number: 20230414183
    Abstract: A computer-implemented method for preparing a subject in medical imaging, comprising: obtaining a series of images of a region of interest comprising at least a part of the subject, wherein the series of images comprises at least a first image and at least a subsequent, second image (S10); determining a position of at least one landmark from the series of images, wherein the at least one landmark is anatomically related to a target anatomy (S20); determining a confidence level assigned to the position of the at least one landmark (S30); determining the position of the target anatomy based on the position of the at least one landmark, and the confidence level (S40); providing the position of the target anatomy for preparing the subject in medical imaging (S50).
    Type: Application
    Filed: March 9, 2022
    Publication date: December 28, 2023
    Inventors: Karsten Sommer, Sascha Krueger, Peter Koken, Julien Thomas Senegas
  • Publication number: 20230288514
    Abstract: Disclosed herein is a medical system (100, 300) comprising a memory (110) storing machine executable instructions (120) and an MRF scoring module (122). The MRF scoring module is configured for outputting an MRF quality score (126) in response to receiving MRF data (124) as input. The medical system further comprises a computational system (106) configured for controlling the medical system, wherein execution of the machine executable instructions causes the computational system to: receive (200) the MRF data; receive (202) the MRF quality score in response to inputting the MRF data into an MRF scoring module; append (206) the MRF quality score to the MRF data if the MRF quality score is within a predetermined range (128); and provide (208) a signal (132) if the MRF quality score is outside of the predetermined range.
    Type: Application
    Filed: July 1, 2021
    Publication date: September 14, 2023
    Inventors: Thomas Erik Amthor, Mariya Ivanova Doneva, Peter Koken, Kay Nehrke
  • Patent number: 11579230
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within a measurement zone (108). The magnetic resonance imaging system (100) comprises: a processor (130) for controlling the magnetic resonance imaging system (100) and a memory (136) storing machine executable instructions (150, 152, 154), pulse sequence commands (140) and a dictionary (144). The pulse sequence commands (140) are configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of multiple steady state free precession (SSFP) states per repetition time. The pulse sequence commands (140) are further configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of the multiple steady state free precession (SSFP) states according to a magnetic resonance fingerprinting protocol. The dictionary (144) comprises a plurality of tissue parameter sets.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: February 14, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Karsten Sommer, Mariya Ivanova Doneva, Thomas Erik Amthor, Peter Koken, Jan Jakob Meineke
  • Patent number: 11540800
    Abstract: The invention provides for a medical apparatus (100, 300, 400) comprising a subject support (102) configured for moving a subject (106) from a first position (124) to a second position (130) along a linear path (134). The subject support comprises a support surface (108) for receiving the subject. The subject support is further configured for positioning the subject support in at least one intermediate position (128). The subject support is configured for measuring a displacement (132) along the linear path between the first position and the at least one intermediate position. Each of the at least one intermediate position is located between the first position and the second position. The medical apparatus further comprises a camera (110) configured for imaging the support surface in the first position.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 3, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Koken, Julien Senegas, Martin Bergtholdt
  • Publication number: 20220206098
    Abstract: Disclosed is a medical system (100, 300, 500, 700) comprising: a memory (128) storing machine executable instructions (130); a processor (122) configured for controlling the medical system; and a pilot tone system (106). The pilot tone system comprises a radio frequency system (108) comprising multiple transmit channels (110) and multiple receive channels (112). The multiple transmit channels are configured for each transmitting unique pilot tone (132) signals via multiple transmit coils. The multiple receive channels are configured for receiving multi-channel pilot tone data (134) via multiple receive coils.
    Type: Application
    Filed: May 18, 2020
    Publication date: June 30, 2022
    Inventors: CHRISTOPH GUNTHER LEUSSLER, CHRISTIAN FINDEKLEE, JAN JAKOB MEINEKE, PETER VERNICKEL, PETER KOKEN
  • Publication number: 20220202386
    Abstract: Disclosed is an X-ray system (100, 700) configured for acquiring medical imaging data (134) from a subject (102) at least partially within an imaging zone (105). The X-ray system comprises a memory (128) storing machine executable instructions (130). The X-ray system further comprises a processor (122) configured for controlling the X-ray system. The X-ray system further comprises a pilot tone system (106), wherein the pilot tone 5 system comprises a radio frequency system (108) comprising multiple transmit channel (110) and multiple receive channel (112). The multiple transmit channel is configured for transmitting multiple pilot tone signal (136) via multiple transmit coil (114). The multiple receive channel is configured for receiving pilot tone data (138) via multiple receive coil (116).
    Type: Application
    Filed: May 14, 2020
    Publication date: June 30, 2022
    Inventors: CHRISTOPH GÜNTER LEUSSLER, CHRISTIAN FINDEKLEE, JAN JAKOB MEINEKE, PETER VERNICKEL, PETER KOKEN
  • Publication number: 20210280297
    Abstract: The invention provides for a medical instrument (100, 600) that comprises a medical imaging system (102, 102?), a subject support (110), and a camera system (104) configured for imaging the subject support in an initial position.
    Type: Application
    Filed: April 18, 2019
    Publication date: September 9, 2021
    Inventors: Sascha KRUEGER, Julien SENEGAS, Peter KOKEN
  • Patent number: 11092659
    Abstract: A magnetic resonance imaging (MRI) system (100) includes a memory (134) for storing machine executable instructions (140) and magnetic resonance fingerprinting (MRF) pulse sequence commands (142) which cause the MRI system to acquire MRF magnetic resonance data (144) according to an MRF protocol. The pulse sequence commands are configured for acquiring the MRF magnetic resonance data in two-dimensional slices (410, 412, 414, 416, 418, 420), having a slice selection direction. A train of pulse sequence repetitions includes a sampling event where the MRF data is repeatedly sampled.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: August 17, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Mariya Ivanova Doneva, Karsten Sommer, Peter Koken
  • Patent number: 11085985
    Abstract: A magnetic resonance imaging (MRI) system includes a memory for storing machine executable instructions and MRF pulse sequence commands. The MRF pulse sequence commands are configured for controlling the MRI system to acquire MRF magnetic resonance data according to a magnetic resonance fingerprinting protocol. The memory further includes a Fourier transformed magnetic resonance finger printing dictionary. The finger printing dictionary includes entries for at least one intrinsic property.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: August 10, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Karsten Sommer, Thomas Erik Amthor, Jan Jakob Meineke, Peter Koken, Mariya Ivanova Doneva
  • Patent number: 11041925
    Abstract: A processor controls an MRI system with pulse sequence commands to acquire magnetic resonance data according to a magnetic resonance fingerprinting protocol during multiple pulse repetitions. The pulse sequence commands control the magnetic resonance imaging system to cause gradient induced spin rephasing at least twice during each of the multiple pulse repetitions, and to acquire at least two magnetic resonance signals during each of the multiple pulse repetitions. Each of the at least two magnetic resonance signals is measured during a separate one of the gradient induced spin rephasing. The magnetic resonance data includes the at least two magnetic resonance signals acquired during each of the multiple pulse repetitions. The processor further at least partially calculates a B0-off-resonance map using the magnetic resonance data, and generates at least one magnetic resonance parametric map by comparing the magnetic resonance data with a magnetic resonance fingerprinting dictionary.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 22, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Jan Jakob Meineke, Thomas Erik Amthor, Peter Koken, Karsten Sommer
  • Patent number: 10816625
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within an imaging zone (108). The magnetic resonance imaging system comprises a memory (134, 136) for storing machine executable instructions (160), and pulse sequence commands (140, 400, 502, 600, 700), wherein the pulse sequence commands are configured to cause the magnetic imaging resonance system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting technique. The pulse sequence commands are further configured to control the magnetic resonance imaging system to perform spatial encoding using a zero echo time magnetic resonance imaging protocol.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 27, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Bornert, Kay Nehrke, Mariya Ivanova Doneva, Thomas Erik Amthor, Peter Koken, George Randall Duensing
  • Patent number: 10794976
    Abstract: A method of employing a central computer database (18) for supporting a characterization of tissue by magnetic resonance fingerprinting measurements, includes: exciting nuclei of a subject of interest by applying (50) a radio frequency excitation field B1 generated according to a magnetic resonance fingerprinting sequence (38), acquiring (52) magnetic resonance imaging signal data from radiation emitted by excited nuclei of the subject of interest, transferring (54) a magnetic resonance fingerprinting data set (42) to the central computer database (18), retrieving (56) a predefined dictionary from the central computer database (18), matching (60) the acquired magnetic resonance imaging signal data to the retrieved dictionary by applying a pattern recognition algorithm to determine a value (40) or a set of values (40) for at least one physical quantity (T1, T2), adding (62) at least the determined value (40) or the determined set of values (40) as a new entry of an associated medical data set (36) to the centr
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: October 6, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Sascha Krueger, Mariya Ivanova Donevea, Peter Koken, Julien Senegas, Jochen Keupp, Peter Boernert
  • Patent number: 10788556
    Abstract: A magnetic resonance imaging system (100) acquires magnetic resonance data (142) from a subject (118) within a measurement zone (108). Pulse sequence commands (140) control the magnetic resonance imaging system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting protocol. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to repeatedly generate an RF pulse train (300) and acquire the magnetic resonance data as multiple k-space traces. The machine executable instructions causes the processor to: sequentially acquire (200) the multiple k-space traces of magnetic resonance data by controlling the magnetic resonance imaging system with pulse sequence commands and calculate (202) the abundance of each of a set of predetermined substances for k-space traces that are acquired after a predetermined number of k-space traces of the multiple k-space traces has been acquired and the acquired magnetization has reached a steady state.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: September 29, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Peter Koken, Karsten Sommer, Mariya Ivanova Doneva, Peter Boernert
  • Publication number: 20200237334
    Abstract: The invention provides for a medical apparatus (100, 300, 400) comprising a subject support (102) configured for moving a subject (106) from a first position (124) to a second position (130) along a linear path (134). The subject support comprises a support surface (108) for receiving the subject. The subject support is further configured for positioning the subject support in at least one intermediate position (128). The subject support is configured for measuring a displacement (132) along the linear path between the first position and the at least one intermediate position. Each of the at least one intermediate position is located between the first position and the second position. The medical apparatus further comprises a camera (110) configured for imaging the support surface in the first position.
    Type: Application
    Filed: October 12, 2018
    Publication date: July 30, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: PETER KOKEN, JULIEN SENEGAS, MARTIN BERGTHOLDT
  • Publication number: 20200166596
    Abstract: The invention relates to a magnetic resonance imaging system (100, 400) comprising a memory (134) for storing machine executable instructions (140) and MRF pulse sequence commands (142). The MRF pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire MRF magnetic resonance data (144) according to a magnetic resonance fingerprinting protocol. The memory further contains a Fourier transformed magnetic resonance finger printing dictionary (150). The Fourier transformed magnetic resonance finger printing dictionary comprises entries for at least one intrinsic property (152). The magnetic resonance imaging system further comprises a processor (130) for controlling the magnetic resonance imaging system.
    Type: Application
    Filed: July 3, 2018
    Publication date: May 28, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Karsten Sommer, Thomas Erik Amthor, Jan Jakob Meineke, Peter Koken, Mariya Ivanova Doneva
  • Publication number: 20200096589
    Abstract: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within a measurement zone (108). The magnetic resonance imaging system (100) comprises: a processor (130) for controlling the magnetic resonance imaging system (100) and a memory (136) storing machine executable instructions (150, 152, 154), pulse sequence commands (140) and a dictionary (144). The pulse sequence commands (140) are configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of multiple steady state free precession (SSFP) states per repetition time. The pulse sequence commands (140) are further configured for controlling the magnetic resonance imaging system (100) to acquire the magnetic resonance data (142) of the multiple steady state free precession (SSFP) states according to a magnetic resonance fingerprinting protocol. The dictionary (144) comprises a plurality of tissue parameter sets.
    Type: Application
    Filed: December 6, 2017
    Publication date: March 26, 2020
    Inventors: KARSTEN SOMMER, MARIYA IVANOVA DONEVA, THOMAS ERIK AMTHOR, PETER KOKEN, JAN JAKOB MEINEKE
  • Publication number: 20200041594
    Abstract: The invention provides for a magnetic resonance imaging (MRI) system (100) that comprises a memory (134) for storing machine executable instructions (140) and MRF pulse sequence commands (142). The MRF pulse sequence commands cause the MRI system to acquire MRF magnetic resonance data (144) according to a magnetic resonance (MR) fingerprinting protocol. The pulse sequence commands are configured for acquiring the MRF magnetic resonance data in two dimensional slices (410, 412, 414, 416, 418, 420), wherein the two dimensional slices have a slice selection direction, wherein the pulse sequence commands comprises a train of pulse sequence repetitions. The train of pulse sequence repetitions comprises a sampling event where the MRF magnetic resonance data is repeatedly sampled. The MRI system further comprises a processor for controlling the magnetic resonance imaging system.
    Type: Application
    Filed: March 30, 2018
    Publication date: February 6, 2020
    Inventors: THOMAS ERIK AMTHOR, MARIYA IVANOVA DONEVA, KARSTEN SOMMER, PETER KOKEN
  • Publication number: 20190242961
    Abstract: The invention provides for a magnetic resonance imaging system (100). Machine executable instructions cause a processor controlling the MRI system to control (200) the magnetic resonance imaging system with the pulse sequence commands to acquire the magnetic resonance data. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting protocol. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the magnetic resonance data during multiple pulse repetitions (302). The pulse sequence commands are configured for controlling the magnetic resonance imaging system to cause gradient induced spin rephasing at least twice during each of the multiple pulse repetitions using a gradient magnetic field generating system (110, 112).
    Type: Application
    Filed: September 22, 2017
    Publication date: August 8, 2019
    Inventors: JAN JAKOB MEINEKE, THOMAS ERIK AMTHOR, PETER KOKEN, KARSTEN SOMMER