Patents by Inventor Peter Krogstrup Jeppesen

Peter Krogstrup Jeppesen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10692010
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: June 23, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Publication number: 20200176663
    Abstract: A mixed semiconductor-superconductor platform is fabricated in phases. In a masking phase, a dielectric mask is formed on a substrate, such that the dielectric mask leaves one or more regions of the substrate exposed. In a selective area growth phase, a semiconductor material is selectively grown on the substrate in the one or more exposed regions. in a superconductor growth phase, a layer of superconducting material is formed, at least part of which is in direct contact with the selectively grown semiconductor material. The mixed semiconductor-superconductor platform comprises the selectively grown semiconductor material and the superconducting material in direct contact with the selectively grown semiconductor material.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 4, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventor: Peter Krogstrup Jeppesen
  • Patent number: 10665701
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: May 26, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekėnas
  • Publication number: 20200027919
    Abstract: Various fabrication method are disclosed. In one such method, at least one structure is formed on a substrate which protrudes outwardly from a plane of the substrate. A beam is used to form a layer of material, at least part of which is in direct contact with a semiconductor structure on the substrate, the semiconductor structure comprising at least one nanowire. The beam has a non-zero angle of incidence relative to the normal of the plane of the substrate such that the beam is incident on one side of the protruding structure, thereby preventing a portion of the nanowire in a shadow region adjacent the other side of the protruding structure in the plane of the substrate from being covered with the material.
    Type: Application
    Filed: October 26, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Kevin Van Hoogdalem, Leonardus Kouwenhoven, Pavel Aseev, Peter Krogstrup Jeppesen
  • Publication number: 20200027030
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Publication number: 20200027971
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas