Patents by Inventor Peter L. Gehlbach

Peter L. Gehlbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200275942
    Abstract: The present invention is directed to a device to firmly grasp and manipulate delicate tissues in microsurgery, while precisely measuring tool-tissue interaction forces in three dimensions (x-y-z). The design enables precise measurement of forces at the tool tip without being influenced by other forces that may act on the tool shaft. The device of the present invention is capable of measuring axial (z) forces together with the transverse forces (x-y) on an actuated (not static) instrument. Fiber optic sensors are embedded into strategic locations of the design to decouple and precisely detect force components (x-y-z) separately. The force information is used to provide feedback to the operator, or to a robotic platform. The exerted forces on critical tissues, such as the retina in eye surgery, can be maintained at a safe level, clinical complications due to excessive forces can be lessened, safety, and outcome of microsurgical procedures can be enhanced.
    Type: Application
    Filed: October 26, 2018
    Publication date: September 3, 2020
    Inventors: Iulian Ioan Iordachita, Berk Gonenc, Russell H. Taylor, Peter L. Gehlbach, James T. Handa
  • Patent number: 10363164
    Abstract: A force-sensing tool includes a tool shaft that has a proximal end and a distal end, a flexure section attached at a first end to the distal end of the tool shaft, a tool tip operatively connected to the flexure section such that axial forces applied to the tool tip are coupled primarily to a first portion of the flexure section and transverse forces applied to the tool tip are coupled primarily to a second portion of the flexure section, an axial force sensor coupled to the first portion of the flexure section, and a transverse force sensor coupled to the second portion of the flexure section. The axial force sensor responds to axial forces applied to the tool tip substantially independently of the transverse forces applied to the tool tip under a designed operating range of forces, and the transverse force sensor responds to transverse forces applied to the tool tip substantially independently of the axial forces applied to the tool tip under the designed operating range of forces.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: July 30, 2019
    Assignee: The Johns Hopkins University
    Inventors: Xingchi He, Iulian Iordachita, Russell H. Taylor, James T. Handa, Peter L. Gehlbach
  • Patent number: 10188808
    Abstract: A motion-compensated injector system includes a handheld tool having a hollow shaft with a distal end for insertion into tissue of a subject. The system also includes an optical coherence tomography-based optical detection system having an optical fiber with a distal end at a fixed distance from the distal end of the hollow shaft, and an optical sensor to receive a signal from the optical fiber. The system further includes an actuator to move the hollow shaft in an axial direction, and a control unit to control the actuator. The optical detection system can monitor a distance between the distal end of the optical fiber and a reference portion of the tissue of the subject, and the control unit can control the actuator to move the hollow shaft to compensate for relative motion between the handheld tool and the portion of the tissue.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 29, 2019
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jin U. Kang, Peter L. Gehlbach
  • Patent number: 10188552
    Abstract: A surgical system provides hands-free control of at least one surgical tool includes a robot having a tool connector, a smart tool attached to the tool connector of the robot, and a feedback control system configured to communicate with the smart tool to provide feedback control of the robot. The smart tool includes a tool that has a tool shaft having a distal end and a proximal end, a strain sensor arranged at a first position along the tool shaft, at least one of a second strain sensor or a torque-force sensor arranged at a second position along the tool shaft, the second position being more towards the proximal end of the tool shaft than the first position, and a signal processor configured to communicate with the strain sensor and the at least one of the second strain sensor or the torque-force sensor to receive detection signals therefrom.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: January 29, 2019
    Assignee: The Johns Hopkins University
    Inventors: Xingchi He, Iulian Iordachita, Yuki Horise, Russell H. Taylor, Peter L. Gehlbach
  • Patent number: 10188281
    Abstract: An observation system for viewing light-sensitive tissue includes an illumination system configured to illuminate the light-sensitive tissue, an imaging system configured to image at least a portion of the light-sensitive tissue upon being illuminated by the illumination system, and an image display system in communication with the imaging system to display an image of the portion of the light-sensitive tissue. The illumination system is configured to illuminate the light-sensitive tissue with a reduced amount of light within a preselected wavelength range compared to multispectral illumination light, and the image of the portion of the light-sensitive tissue is compensated for the reduced amount of light within the preselected frequency range to approximate an image of the light-sensitive tissue under the multispectral illumination.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: January 29, 2019
    Assignee: The Johns Hopkins University
    Inventors: Russell H. Taylor, Seth D. Billings, Peter L. Gehlbach, Gregory D. Hager, James T. Handa, Jin U. Kang, Balazs P. Vagvolgyi, Raphael Sznitman, Zachary Pezzementi
  • Patent number: 10045882
    Abstract: A surgical instrument has a surgical tool that has a proximal end and a distal end, and an optical sensor that has at least a portion attached to the surgical tool. The surgical tool has a portion that is suitable to provide a reference portion of the surgical tool, and the optical sensor has an end fixed relative to the reference portion of the surgical tool such that the reference portion of the surgical tool can be detected along with tissue that is proximate or in contact with the distal end of the surgical tool while in use.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: August 14, 2018
    Assignee: The Johns Hopkins University
    Inventors: Marcin A. Balicki, Russell H. Taylor, Jin U. Kang, Peter L. Gehlbach, James T. Handa, Jaeho Han
  • Patent number: 9907696
    Abstract: A motion-compensated cutting system includes a hand-held tool body, and an actuator connected to the tool body. A shaft of the actuator is movable relative to the tool body so that a distal end of a cutting implement attached to the shaft is axially movable relative to the tool body. An optical coherence tomography system includes an optical fiber with a distal end fixed relative to the distal end of the cutting implement. The system includes a control unit that can determine a position of the distal end of the cutting implement relative to a reference surface based on input from the optical coherence tomography system. The control unit can control the cutting implement to compensate for relative motion between the tool body and the reference surface, and can maintain a predetermined depth of the distal end of the cutting implement with respect to the reference surface.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: March 6, 2018
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jin U. Kang, Peter L. Gehlbach
  • Patent number: 9872692
    Abstract: A motion-compensated micro-forceps system, including a manually-operable micro-forceps assembly having a plurality of moveable grasping elements; a motor assembly operatively connected to the plurality of moveable grasping elements; an optical detection system having an optical fiber attached to the manually-operable micro-forceps assembly at a fixed axial distance relative to a distal-most end of the plurality of moveable grasping elements; and a motor controller configured to communicate with the optical detection system and the motor assembly to provide motion compensation of the plurality of moveable grasping elements of the manually-operable micro-forceps, wherein the optical detection system is configured to output a signal for the determination of a distance of the plurality of moveable grasping elements of the micro-forceps to a target during operation, and wherein the motor controller is configured to provide feedback control signals to the motor assembly for motion compensation for both hand tremor
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: January 23, 2018
    Assignee: The Johns Hopkins University
    Inventors: Jin U. Kang, Peter L. Gehlbach
  • Patent number: 9814392
    Abstract: A visual tracking and annotation system for surgical intervention includes an image acquisition and display system arranged to obtain image streams of a surgical region of interest and of a surgical instrument proximate the surgical region of interest and to display acquired images to a user; a tracking system configured to track the surgical instrument relative to the surgical region of interest; a data storage system in communication with the image acquisition and display system and the tracking system; and a data processing system in communication with the data storage system, the image acquisition and display system and the tracking system. The data processing system is configured to annotate images displayed to the user in response to an input signal from the user.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: November 14, 2017
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Marcin A. Balicki, Russell H. Taylor, Gregory D. Hager, Peter L. Gehlbach, James T. Handa, Rajesh Kumar
  • Publication number: 20170156928
    Abstract: A force-sensing tool includes a tool shaft that has a proximal end and a distal end, a flexure section attached at a first end to the distal end of the tool shaft, a tool tip operatively connected to the flexure section such that axial forces applied to the tool tip are coupled primarily to a first portion of the flexure section and transverse forces applied to the tool tip are coupled primarily to a second portion of the flexure section, an axial force sensor coupled to the first portion of the flexure section, and a transverse force sensor coupled to the second portion of the flexure section. The axial force sensor responds to axial forces applied to the tool tip substantially independently of the transverse forces applied to the tool tip under a designed operating range of forces, and the transverse force sensor responds to transverse forces applied to the tool tip substantially independently of the axial forces applied to the tool tip under the designed operating range of forces.
    Type: Application
    Filed: August 11, 2016
    Publication date: June 8, 2017
    Inventors: Xingchi He, Iulian Iordachita, Russell H. Taylor, James T. Handa, Peter L. Gehlbach
  • Publication number: 20170042730
    Abstract: A surgical system provides hands-free control of at least one surgical tool includes a robot having a tool connector, a smart tool attached to the tool connector of the robot, and a feedback control system configured to communicate with the smart tool to provide feedback control of the robot. The smart tool includes a tool that has a tool shaft having a distal end and a proximal end, a strain sensor arranged at a first position along the tool shaft, at least one of a second strain sensor or a torque-force sensor arranged at a second position along the tool shaft, the second position being more towards the proximal end of the tool shaft than the first position, and a signal processor configured to communicate with the strain sensor and the at least one of the second strain sensor or the torque-force sensor to receive detection signals therefrom.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 16, 2017
    Inventors: Xingchi He, Iulian Iordachita, Yuki Horise, Russell H. Taylor, Peter L. Gehlbach
  • Publication number: 20160262605
    Abstract: An observation system for viewing light-sensitive tissue includes an illumination system configured to illuminate the light-sensitive tissue, an imaging system configured to image at least a portion of the light-sensitive tissue upon being illuminated by the illumination system, and an image display system in communication with the imaging system to display an image of the portion of the light-sensitive tissue.
    Type: Application
    Filed: March 30, 2016
    Publication date: September 15, 2016
    Applicant: The Johns Hopkins University
    Inventors: Russell H. Taylor, Seth D. Billings, Peter L. Gehlbach, Gregory D. Hager, James T. Handa, Jin U. Kang, Balazs P. Vagvolgyi, Raphael Sznitman, Zachary Pezzementi
  • Patent number: 9320428
    Abstract: An observation system for viewing light-sensitive tissue includes an illumination system configured to illuminate the light-sensitive tissue, an imaging system configured to image at least a portion of the light-sensitive tissue upon being illuminated by the illumination system, and an image display system in communication with the imaging system to display an image of the portion of the light-sensitive tissue. The illumination system is configured to illuminate the light-sensitive tissue with a reduced amount of light within a preselected wavelength range compared to multispectral illumination light, and the image of the portion of the light-sensitive tissue is compensated for the reduced amount of light within the preselected frequency range to approximate an image of the light-sensitive tissue under the multispectral illumination.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: April 26, 2016
    Assignee: The Johns Hopkins University
    Inventors: Russell H. Taylor, Seth D. Billings, Peter L. Gehlbach, Gregory D. Hager, James T. Handa, Jin Ung Kang, Balazs Vagvolgyi, Raphael Sznitman, Zachary Pezzementi
  • Publication number: 20150305761
    Abstract: A motion-compensated micro-forceps system, including a manually-operable micro-forceps assembly having a plurality of moveable grasping elements; a motor assembly operatively connected to the plurality of moveable grasping elements; an optical detection system having an optical fiber attached to the manually-operable micro-forceps assembly at a fixed axial distance relative to a distal-most end of the plurality of moveable grasping elements; and a motor controller configured to communicate with the optical detection system and the motor assembly to provide motion compensation of the plurality of moveable grasping elements of the manually-operable micro-forceps, wherein the optical detection system is configured to output a signal for the determination of a distance of the plurality of moveable grasping elements of the micro-forceps to a target during operation, and wherein the motor controller is configured to provide feedback control signals to the motor assembly for motion compensation for both hand tremor
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Applicant: The Johns Hopkins University
    Inventors: Jin U. Kang, Peter L. Gehlbach
  • Publication number: 20150297404
    Abstract: A motion-compensated cutting system includes a hand-held tool body, and an actuator connected to the tool body. A shaft of the actuator is movable relative to the tool body so that a distal end of a cutting implement attached to the shaft is axially movable relative to the tool body. An optical coherence tomography system includes an optical fiber with a distal end fixed relative to the distal end of the cutting implement. The system includes a control unit that can determine a position of the distal end of the cutting implement relative to a reference surface based on input from the optical coherence tomography system. The control unit can control the cutting implement to compensate for relative motion between the tool body and the reference surface, and can maintain a predetermined depth of the distal end of the cutting implement with respect to the reference surface.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 22, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jin U. Kang, Peter L. Gehlbach
  • Patent number: 9116262
    Abstract: An illumination system includes a light source, an optical waveguide that has a proximal end and a distal end such that the proximal end is arranged to receive light from the light source and the distal end is suitable to illuminate an object of interest; and an optical coupler constructed and arranged to couple light from the light source into the optical waveguide. The optical coupler includes a reflective surface that reflects at least some light diverging from the light source to be coupled into the optical waveguide.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 25, 2015
    Assignee: The Johns Hopkins University
    Inventors: Jin U. Kang, Seth D. Billings, Peter L. Gehlbach, James T. Handa, Yong Huang, Russell H. Taylor, Yi Yang
  • Publication number: 20150209527
    Abstract: A motion-compensated injector system includes a handheld tool having a hollow shaft with a distal end for insertion into tissue of a subject. The system also includes an optical coherence tomography-based optical detection system having an optical fiber with a distal end at a fixed distance from the distal end of the hollow shaft, and an optical sensor to receive a signal from the optical fiber. The system further includes an actuator to move the hollow shaft in an axial direction, and a control unit to control the actuator. The optical detection system can monitor a distance between the distal end of the optical fiber and a reference portion of the tissue of the subject, and the control unit can control the actuator to move the hollow shaft to compensate for relative motion between the handheld tool and the portion of the tissue.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 30, 2015
    Applicant: The Johns Hopkins University
    Inventors: Jin U. Kang, Peter L. Gehlbach
  • Publication number: 20130033887
    Abstract: An illumination system includes a light source, an optical waveguide that has a proximal end and a distal end such that the proximal end is arranged to receive light from the light source and the distal end is suitable to illuminate an object of interest; and an optical coupler constructed and arranged to couple light from the light source into the optical waveguide. The optical coupler includes a reflective surface that reflects at least some light diverging from the light source to be coupled into the optical waveguide.
    Type: Application
    Filed: April 20, 2011
    Publication date: February 7, 2013
    Applicant: The Johns Hopkins University
    Inventors: Jin U. Kang, Seth D. Billings, Peter L. Gehlbach, James T. Handa, Yong Huang, Russell H. Taylor, Yi Yang
  • Publication number: 20120226150
    Abstract: A visual tracking and annotation system for surgical intervention includes an image acquisition and display system arranged to obtain image streams of a surgical region of interest and of a surgical instrument proximate the surgical region of interest and to display acquired images to a user; a tracking system configured to track the surgical instrument relative to the surgical region of interest; a data storage system in communication with the image acquisition and display system and the tracking system; and a data processing system in communication with the data storage system, the image acquisition and display system and the tracking system. The data processing system is configured to annotate images displayed to the user in response to an input signal from the user.
    Type: Application
    Filed: November 1, 2010
    Publication date: September 6, 2012
    Applicant: The Johns Hopkins University
    Inventors: Marcin A. Balicki, Russell H. Taylor, Gregory D. Hager, Peter L. Gehlbach, James Handa, Rajesh Kumar
  • Publication number: 20120130258
    Abstract: An observation system for viewing light-sensitive tissue includes an illumination system configured to illuminate the light-sensitive tissue, an imaging system configured to image at least a portion of the light-sensitive tissue upon being illuminated by the illumination system, and an image display system in communication with the imaging system to display an image of the portion of the light-sensitive tissue.
    Type: Application
    Filed: August 5, 2010
    Publication date: May 24, 2012
    Applicant: The Johns Hopkins University
    Inventors: Russell H. Taylor, Seth D. Billings, Peter L. Gehlbach, Gregory D. Hager, James T. Handa, Jin Ung Kang, Balazs Vagvolgyi, Raphael Sznitman, Zachary Pezzementi