Patents by Inventor Peter Leinfelder

Peter Leinfelder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10168351
    Abstract: The invention relates to an acceleration sensor (100) having a sensor material (120) which is mounted by means of spring elements (130) so as to be movable along a movement axis (x) over a substrate (110), first trim electrodes (140) which are connected to the sensor material (120), and second trim electrodes (150) which are connected to the substrate (110) and are associated with the first trim electrodes (140). When the sensor material is deflected along the movement axis, a spring force acting on the sensor material (120) is generated by the spring elements (130), and when the sensor material (120) is deflected, an electrostatic force acting on the sensor material (120), which counteracts the spring force, is generated by application of an electrical trim voltage between the first trim electrodes (140) and the second trim elements (150).
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: January 1, 2019
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Stefan Koenig, Peter Leinfelder
  • Patent number: 9983226
    Abstract: The invention relates to an acceleration sensor (400) comprising an excitation mass (420) having excitation electrodes (430), which excitation mass is movably mounted over a substrate (410) along a movement axis (x) and comprising detection electrodes (440) which are permanently connected to the substrate (410) and allocated to the excitation electrodes (430). A first group of pairings (450) of excitation electrode (430) and allocated detection electrodes (440) is suitable for deflecting the excitation mass (420) along the movement axis (x) in a first direction (460). A second group of pairings (450) of excitation electrodes (430) and allocated detection electrodes (440) is suitable for deflecting the excitation mass (420) along the movement axis (x) in a second direction (465), which is opposite the first direction (460). The number of pairings (450) in the first group is equal to the number of pairings (450) in the second group.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: May 29, 2018
    Assignee: Northrop Grumman Litef GmbH
    Inventor: Peter Leinfelder
  • Publication number: 20180024160
    Abstract: The invention relates to an acceleration sensor (100) having a sensor material (120) which is mounted by means of spring elements (130) so as to be movable along a movement axis (x) over a substrate (110), first trim electrodes (140) which are connected to the sensor material (120), and second trim electrodes (150) which are connected to the substrate (110) and are associated with the first trim electrodes (140). When the sensor material is deflected along the movement axis, a spring force acting on the sensor material (120) is generated by the spring elements (130), and when the sensor material (120) is deflected, au electrostatic three acting on the sensor material (120), which counteracts the spring force, is generated by application of an electrical trim voltage between the first trim electrodes (140) and the second trim elements (150).
    Type: Application
    Filed: January 27, 2016
    Publication date: January 25, 2018
    Applicant: NORTHROP GRUMMAN LITEF GMBH
    Inventors: STEFAN KOENIG, PETER LEINFELDER
  • Publication number: 20170343579
    Abstract: The invention relates to an acceleration sensor (400) comprising an excitation mass (420) having excitation electrodes (430), which excitation mass is movably mounted over a substrate (410) along a movement axis (x) and comprising detection electrodes (440) which are permanently connected to the substrate (410) and allocated to the excitation electrodes (430). A first group of pairings (450) of excitation electrode (430) and allocated detection electrodes (440) is suitable for deflecting the excitation mass (420) along the movement axis (x) in a first direction (460). A second group of pairings (450) of excitation electrodes (430) and allocated detection electrodes (440) is suitable for deflecting the excitation mass (420) along the movement axis (x) in a second direction (465), which is opposite the first direction (460). The number of pairings (450) in the first group is equal to the number of pairings (450) in the second group.
    Type: Application
    Filed: January 4, 2016
    Publication date: November 30, 2017
    Applicant: NORTHROP GRUMMAN LITEF GMBH
    Inventor: PETER LEINFELDER
  • Patent number: 9709596
    Abstract: The invention relates to an acceleration sensor, comprising a substrate having a substrate surface and a sample mass that is movable relative to the substrate in a first direction (x) parallel to the substrate surface. The sample mass has a comb-like electrode that is movable together with the sample mass and has a plurality of teeth, which extend in the first direction (x). The acceleration sensor further comprises a counter-electrode fixedly connected to the substrate, which counter-electrode has a fixed comb-like electrode and wherein said fixed comb-like electrode has a plurality of teeth which extend in a direction opposite to the first direction (x). The teeth of the movable comb-like electrode engage with the teeth of the fixed comb-like electrode. The acceleration sensor further comprises a shielding electrode fixedly connected to the substrate and which is suitable for increasing a pneumatic damping of the sample mass during a deflection movement of the sample mass.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: July 18, 2017
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Wolfram Geiger, Julian Bartholomeyczik, Peter Leinfelder
  • Publication number: 20160069928
    Abstract: The invention relates to an acceleration sensor, comprising a substrate having a substrate surface and a sample mass that is movable relative to the substrate in a first direction (x) parallel to the substrate surface. The sample mass has a comb-like electrode that is movable together with the sample mass and has a plurality of teeth, which extend in the first direction (x). The acceleration sensor further comprises a counter-electrode fixedly connected to the substrate, which counter-electrode has a fixed comb-like electrode and wherein said fixed comb-like electrode has a plurality of teeth which extend in a direction opposite to the first direction (x). The teeth of the movable comb-like electrode engage with the teeth of the fixed comb-like electrode. The acceleration sensor further comprises a shielding electrode fixedly connected to the substrate and which is suitable for increasing a pneumatic damping of the sample mass during a deflection movement of the sample mass.
    Type: Application
    Filed: March 27, 2014
    Publication date: March 10, 2016
    Inventors: Wolfram Geiger, Julian Bartholomeyczik, Peter Leinfelder
  • Patent number: 9052196
    Abstract: A Coriolis gyroscope comprises a mass system that can be excited to perform vibrations parallel to a first axis, whereby a deflection of the mass system due to a Coriolis force along a second axis perpendicular to the first axis is detectable. At least one first correction unit and at least one second correction unit, which each comprise a plurality of stationary correction electrodes and moving correction electrodes whereby the stationary correction electrodes extend in the direction of the first axis and are firmly connected to the substrate by corresponding anchor structures, and the moving correction electrodes are provided as a part of the mass system. A method for reducing the quadrature bias of a Coriolis gyroscope of this type comprises applying at least temporarily constant corrective voltages to the correction units.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: June 9, 2015
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Wolfram Geiger, Peter Leinfelder
  • Publication number: 20130055787
    Abstract: A Coriolis gyroscope comprises a mass system that can be excited to perform vibrations parallel to a first axis, whereby a deflection of the mass system due to a Coriolis force along a second axis perpendicular to the first axis is detectable. At least one first correction unit and at least one second correction unit, which each comprise a plurality of stationary correction electrodes and moving correction electrodes whereby the stationary correction electrodes extend in the direction of the first axis and are firmly connected to the substrate by corresponding anchor structures, and the moving correction electrodes are provided as a part of the mass system. A method for reducing the quadrature bias of a Coriolis gyroscope of this type comprises applying at least temporarily constant corrective voltages to the correction units.
    Type: Application
    Filed: February 1, 2011
    Publication date: March 7, 2013
    Inventors: Wolfram Geiger, Peter Leinfelder
  • Patent number: 8365595
    Abstract: A rotation rate sensor comprises a substrate and two structures which move relative to the substrate on a design plane (x-y), with the two moving structures being coupled to form a coupled structure such that the coupled structure has a first oscillation mode with antiphase deflections of the moving structures in a first direction (x) on the design plane (x-y) as excitation mode. The coupled structure has a second oscillation mode as a detection mode which is excited by Coriolis accelerations when the first oscillation mode is excited and on rotation about a sensitive axis (z) of the rotation rate sensor. The sensitive axis is at right angles to the design plane (x-y), and the coupled structure is designed such that, subject to optimal preconditions, it does not have any oscillation mode which can be excited by linear accelerations of the rotation rate sensor in a direction parallel to the second axis.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 5, 2013
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Wolfram Geiger, Peter Leinfelder, Guenter Spahlinger, Julian Bartholomeyczik
  • Publication number: 20100139399
    Abstract: A rotation rate sensor comprises a substrate and two structures which move relative to the substrate on a design plane (x-y), with the two moving structures being coupled to form a coupled structure such that the coupled structure has a first oscillation mode with antiphase deflections of the moving structures in a first direction (x) on the design plane (x-y) as excitation mode. The coupled structure has a second oscillation mode as a detection mode which is excited by Coriolis accelerations when the first oscillation mode is excited and on rotation about a sensitive axis (z) of the rotation rate sensor. The sensitive axis is at right angles to the design plane (x-y), and the coupled structure is designed such that, subject to optimal preconditions, it does not have any oscillation mode which can be excited by linear accelerations of the rotation rate sensor in a direction parallel to the second axis.
    Type: Application
    Filed: March 28, 2008
    Publication date: June 10, 2010
    Applicant: NORTHROP GRUMMAN LITEF GMBH
    Inventors: Wolfram Geiger, Peter Leinfelder, Guenter Spahlinger, Julian Bartholomeyczik
  • Patent number: 5614742
    Abstract: A high precision micromechanical accelerometer comprises a layered structure of five (5) semiconductor wafers insulated from one another by thin oxide layers. The accelerometer is formed by first connecting a coverplate and a baseplate to associated insulating plates. Counter-electrodes, produced by anisotropic etching from the respective insulating plates, are fixed to the coverplate and the baseplate respectively. The counter-electrodes are contactable through the cover or baseplate via contact windows. A central wafer contains a unilaterally linked mass (pendulum) that is also produced by anisotropic etching and which serves as a movable central electrode of a differential capacitor. The layered structure is hermetically sealed by semiconductor fusion bonding. A stepped gradation from the top is formed at a wafer edge region for attaching contact pads to individual wafers to permit electrical contacting of individual wafers. The invention permits fabrication of a .mu.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: March 25, 1997
    Assignee: LITEF GmbH
    Inventors: Thomas Gessner, Martin Hafen, Eberhard Handrich, Peter Leinfelder, Bruno Ryrko, Egbert Vetter, Maik Wiemer
  • Patent number: 5504032
    Abstract: A high precision micromechanical accelerometer comprises a layered structure of five (5) semiconductor wafers insulated from one another by thin semiconductor material oxide layers. The accelerometer is formed by first connecting a coverplate and a baseplate to associated insulating plates. Counter-electrodes, produced by anisotropic etching from the respective insulating plates, are fixed to the coverplate and the baseplate respectively. The counter-electrodes are contactable through the cover or baseplate via contact windows. A central wafer contains a unilaterally linked mass (pendulum) that is also produced by anisotropic etching and which serves as a movable central electrode of a differential capacitor. The layered structure is hermetically sealed by semiconductor fusion bonding. A stepped gradation from the top is formed at a wafer edge region for attaching contact pads to individual wafers to permit electrical contacting of individual wafers. The invention permits fabrication of a .mu.
    Type: Grant
    Filed: April 7, 1994
    Date of Patent: April 2, 1996
    Assignee: LITEF GmbH
    Inventors: Thomas Gessner, Martin Hafen, Eberhard Handrich, Peter Leinfelder, Bruno Ryrko, Egbert Vetter, Maik Wiemer