Patents by Inventor Peter Lemme

Peter Lemme has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10587332
    Abstract: A hub terminal and remote client communicate via a target satellite in an inclined geosynchronous orbit. As the target satellite ascends or descends away from the geostationary arc, the signal strength of the uplink channel is increased without increasing the level of interference with adjacent geostationary satellites. The increased angular separation from adjacent satellites also decreases downlink interference. The resulting increase in signal to interference ratio permits adjustment of the modulation and coding parameters to increase spectral efficiency. The antenna gain pattern is modeled based on antenna characteristics and the model may be supplemented with measurements of a signal relayed by adjacent satellites. The method permits intermittent communication from locations where the geostationary arc is blocked or using disadvantaged antennas that would be impractical for use with geostationary satellites.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 10, 2020
    Inventor: Peter Lemme
  • Publication number: 20190036597
    Abstract: A hub terminal and remote client communicate via a target satellite in an inclined geosynchronous orbit. As the target satellite ascends or descends away from the geostationary arc, the signal strength of the uplink channel is increased without increasing the level of interference with geostationary satellites. The increased angular separation from geostationary satellites also decreases downlink interference. The resulting increase in signal strength permits adjustment of the modulation and coding parameters to increase spectral efficiency. The method permits intermittent communication with an inclined satellite sharing a geostationary slot with a station-kept satellite, or from locations where the geostationary arc is blocked, or while using disadvantaged antennas that would be impractical for use with geostationary satellites. In some circumstances, it is desirable to deliberately mis-steer the antenna slightly away from the target satellite.
    Type: Application
    Filed: October 3, 2018
    Publication date: January 31, 2019
    Inventor: Peter Lemme
  • Patent number: 10135520
    Abstract: A hub terminal and remote client communicate via a target satellite in an inclined geosynchronous orbit. As the target satellite ascends or descends away from the geostationary arc, the signal strength of the uplink channel is increased without increasing the level of interference with geostationary satellites. The increased angular separation from geostationary satellites also decreases downlink interference. The resulting increase in signal strength permits adjustment of the modulation and coding parameters to increase spectral efficiency. The antenna gain pattern is modeled based on antenna characteristics and the model may be supplemented with measurements of a signal relayed by other satellites. The method permits intermittent communication with an inclined satellite sharing a geostationary slot with a station-kept satellite, or from locations where the geostationary arc is blocked, or while using disadvantaged antennas that would be impractical for use with geostationary satellites.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: November 20, 2018
    Inventor: Peter Lemme
  • Publication number: 20160268677
    Abstract: A hub terminal and remote client communicate via a target satellite in an inclined geosynchronous orbit. As the target satellite ascends or descends away from the geostationary arc, the signal strength of the uplink channel is increased without increasing the level of interference with geostationary satellites. The increased angular separation from geostationary satellites also decreases downlink interference. The resulting increase in signal strength permits adjustment of the modulation and coding parameters to increase spectral efficiency. The antenna gain pattern is modeled based on antenna characteristics and the model may be supplemented with measurements of a signal relayed by other satellites. The method permits intermittent communication with an inclined satellite sharing a geostationary slot with a station-kept satellite, or from locations where the geostationary arc is blocked, or while using disadvantaged antennas that would be impractical for use with geostationary satellites.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Inventor: Peter Lemme
  • Publication number: 20150215029
    Abstract: A hub terminal and remote client communicate via a target satellite in an inclined geosynchronous orbit. As the target satellite ascends or descends away from the geostationary arc, the signal strength of the uplink channel is increased without increasing the level of interference with adjacent geostationary satellites. The increased angular separation from adjacent satellites also decreases downlink interference. The resulting increase in signal to interference ratio permits adjustment of the modulation and coding parameters to increase spectral efficiency. The antenna gain pattern is modeled based on antenna characteristics and the model may be supplemented with measurements of a signal relayed by adjacent satellites. The method permits intermittent communication from locations where the geostationary arc is blocked or using disadvantaged antennas that would be impractical for use with geostationary satellites.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 30, 2015
    Inventor: Peter Lemme
  • Publication number: 20050124337
    Abstract: An electronic communication system for use onboard an aircraft includes a server and a plurality of input ports for connection with passenger computing devices. Passengers can send and retrieve electronic messages (e-mail and/or attachments) using a proxy-based web server access to the user's own e-mail service provider. The system receives proxy-based commands from the user's computing device and translates those commands into web-based commands that enable communication with the passenger's e-mail accounts. The passenger may send e-mail communications by composing a message on the passenger computing device and sending it via the web-based proxy server. E-mail messages may also be retrieved from one or more passenger e-mail accounts. In one embodiment, the system transmits only e-mail summary information to the airborne server and provides the summary information to the passenger.
    Type: Application
    Filed: March 28, 2002
    Publication date: June 9, 2005
    Applicant: Tenzing Communications, Inc.
    Inventors: Simon Gresham, Nathanael Moore, Peter Lemme