Patents by Inventor Peter M. Agboh

Peter M. Agboh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200274583
    Abstract: Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Hsin-Yuo Liu, Peter M. Agboh, Mohit Narang, Indranil S. Sen, Nicholas M. McDonnell, Chia Yiaw Chong
  • Patent number: 10720971
    Abstract: Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: July 21, 2020
    Assignee: APPLE INC.
    Inventors: Hsin-Yuo Liu, Peter M. Agboh, Mohit Narang, Indranil S. Sen, Nicholas M. McDonnell, Chia Yiaw Chong
  • Patent number: 10707972
    Abstract: Systems, methods, and devices are provided for compensating for distortion of a contactless communication channel. The electronic device may include a radio frequency system that itself includes antenna to transmit and receive data using near-field communication (NFC) and an NFC signal processing circuitry. The NFC signal processing circuitry may receive an NFC signal via a communication channel formed between the electronic device and another electronic device and may determine a baseband reference waveform associated with the electromagnetic NFC signal and may determine an error between a portion of the electromagnetic NFC signal and the baseband reference waveform. Furthermore, the NFC signal processing circuitry may determine whether the error is outside of an acceptable error threshold range and, in response to the error being outside of the acceptable error threshold range, train a filter response of the NFC signal processing circuitry to estimate the communication channel.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: July 7, 2020
    Assignee: Apple Inc.
    Inventors: Xinping Zeng, Vusthla Sunil Reddy, Peter M. Agboh
  • Publication number: 20200205031
    Abstract: Exemplary embodiments include a system having a first wireless audio output device configured to connect to a source device via a first piconet and a second wireless audio output device configured to connect to the first wireless audio output device via a second piconet. A schedule of the first piconet includes a plurality of slots associated with an audio packet, a first subset of the slots used by the source device to transmit the audio packet, the first and second wireless audio output devices tuning to the first piconet to listen for the transmissions of the audio packet, and when, after a last one of the first subset of slots, the first or second wireless audio output devices did not receive the audio packet, the first and second wireless audio output devices exchange information via the second piconet such that the both wireless audio output device receive the audio packet.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 25, 2020
    Inventors: Anatoli GOSTEV, Louay ALSAKKA, Axel BERNY, Tad DREIER, Joachim HAMMERSCHMIDT, Lei Li, Xiaojun CHEN, Vusthla Sunil REDDY, Peter M. AGBOH, Mohit NARANG
  • Patent number: 10681773
    Abstract: Exemplary embodiments include a system having a first wireless audio output device and a second wireless audio output device. One of the first or second audio output devices is configured to one of connect as a slave to a source device in a first piconet and connect as a master to the other one of the first or second audio output devices in a second piconet. The one of the first or second wireless audio output devices determines whether an audio packet transmitted by the source device via the first piconet was received by the first wireless audio output device and the second wireless audio output device, and, when at least one of the first wireless audio output device or the second wireless audio output device did not receive the audio packet, the audio packet is exchanged between the first and second wireless audio output devices via the second piconet.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: June 9, 2020
    Assignee: Apple Inc.
    Inventors: Lei Li, Xiaojun Chen, Vusthla Sunil Reddy, Peter M. Agboh, Mohit Narang
  • Patent number: 10644744
    Abstract: Methods and apparatuses are presented to reduce multiuser interference resulting from two or more overlapping ultra wideband (UWB) transmissions by randomizing the start time of packets and/or bursts within the packets. A random offset time may be generated for a packet, and transmission of the packet may be arbitrarily delayed by that random offset time, relative to an earlier time at which the packet is prepared for transmission. A random offset time may be generated for a pulse burst within a symbol of a packet, and transmission of the burst may be delayed by that random offset time, relative to a nominal transmission window within the symbol. The burst may therefore occupy a portion of a guard period following the nominal transmission window. Either procedure, or both procedures, may be used to reduce multiuser interference between two concurrently transmitted packets by randomizing overlap occurring between the bursts.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 5, 2020
    Assignee: Apple Inc.
    Inventors: Xiaoming Yu, Alejandro J. Marquez, Indranil S. Sen, Peter M. Agboh, Shang-Te Yang, Vusthla Sunil Reddy
  • Publication number: 20200112385
    Abstract: A device in an adaptive channel access system may include a processor that is configured initiate access of a channel, and perform a first jammer detection on the channel. The processor is configured to, when a jamming device is detected on the channel, access the channel with a channel occupancy time set to a first duration of time. The processor is configured to, when no jamming devices are detected: access the channel with the channel occupancy time set to the second duration of time that is greater than the first duration, while accessing the channel with the channel occupancy time set to the second duration of time, perform a second jammer detection on the channel, and when the jamming device is detected, cease to access the channel prior to the expiration of the second duration of time, otherwise continue to access the channel without re-initiating access of the channel.
    Type: Application
    Filed: August 21, 2018
    Publication date: April 9, 2020
    Inventors: Xi YANG, Peter M. AGBOH, Qiyang WU, Vusthla Sunil REDDY, Shrenik MILAPCHAND, Manjit S. WALIA
  • Publication number: 20200106496
    Abstract: A user equipment including an antenna arrangement comprising at least three antennas configured for use with a wireless connection is described. The user equipment performs a method including, for each antenna of the at least three antennas, determining a performance metric associated with a data exchange over the wireless connection, ranking each antenna of the at least three antennas based at least in part on the performance metric and selecting, when a data exchange error is detected, one of a first ranked antenna or a second ranked antenna of the at least three antennas for a next data exchange.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Abhishek KAGITAPU, Qiyang Wu, Xi Yang, Vusthla Sunil Reddy, Peter M. Agboh
  • Publication number: 20200107387
    Abstract: Methods performed by a first sink device, a source device, or a second sink device. The first sink device is connected to a source device via a first communication link and a second sink device via a second communication link, wherein the second sink device is configured to eavesdrop on communications between the first sink device and the source device on the first communication link. The methods include determining an occurrence of a trigger event and modifying an operation of at least one of the first sink device, the second sink device or the source device based at least on the trigger event occurring.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 2, 2020
    Inventors: Lei LI, Xiaojun Chen, Camille Chen, Siegfried Lehmann, Vusthla Sunil Reddy, Peter M. Agboh
  • Patent number: 10602397
    Abstract: Exemplary embodiments include a system having a first wireless audio output device configured to connect to a source device via a first piconet and a second wireless audio output device configured to connect to the first wireless audio output device via a second piconet. A schedule of the first piconet includes a plurality of slots associated with an audio packet, a first subset of the slots used by the source device to transmit the audio packet, the first and second wireless audio output devices tuning to the first piconet to listen for the transmissions of the audio packet, and when, after a last one of the first subset of slots, the first or second wireless audio output devices did not receive the audio packet, the first and second wireless audio output devices exchange information via the second piconet such that the both wireless audio output device receive the audio packet.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: March 24, 2020
    Assignee: Apple Inc.
    Inventors: Anatoli Gostev, Louay Alsakka, Axel Berny, Tad Dreier, Joachim Hammerschmidt, Lei Li, Xiaojun Chen, Vusthla Sunil Reddy, Peter M. Agboh, Mohit Narang
  • Publication number: 20200089922
    Abstract: A device implementing a system for NFC communication with a second device includes an antenna and a processor configured to transmit a pulse signal for detection of another device within proximity of the device, and to detect, in conjunction with transmission of the pulse signal, that a first value of a measurement parameter of the antenna satisfies an initial detection factor. The processor is further configured, in response to the detection, to set a confirmation detection factor for the measurement parameter of the antenna based at least in part on the first value of the measurement parameter of the antenna, to transmit a confirmation pulse signal, and to initiate a second polling for reception of data from the other device when a second value of the measurement parameter of the antenna detected in conjunction with transmission of the confirmation pulse signal satisfies the confirmation detection factor.
    Type: Application
    Filed: May 21, 2019
    Publication date: March 19, 2020
    Inventors: Vincent CHAUVIN, Peter M. AGBOH, Vusthla Sunil REDDY, Xinping ZENG
  • Publication number: 20200091965
    Abstract: A device implementing a system for NFC communication includes a processor configured to receive, from an other device, pulse signals for detecting proximity of the device with the other device. The processor is further configured to determine an interval at which the pulse signals are received from the other device. The processor is further configured to determine a time when the other device is expected to transmit a subsequent pulse signal based at least in part on the determined interval. The processor is further configured to transmit a signal to the other device based on the determined time when the other device is expected to transmit the subsequent pulse signal.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 19, 2020
    Inventors: Vincent CHAUVIN, Peter M. AGBOH, Vusthla Sunil REDDY, Xinping ZENG
  • Publication number: 20200067565
    Abstract: Methods and apparatuses are presented to reduce multiuser interference resulting from two or more overlapping ultra wideband (UWB) transmissions by randomizing the start time of packets and/or bursts within the packets. A random offset time may be generated for a packet, and transmission of the packet may be arbitrarily delayed by that random offset time, relative to an earlier time at which the packet is prepared for transmission. A random offset time may be generated for a pulse burst within a symbol of a packet, and transmission of the burst may be delayed by that random offset time, relative to a nominal transmission window within the symbol. The burst may therefore occupy a portion of a guard period following the nominal transmission window. Either procedure, or both procedures, may be used to reduce multiuser interference between two concurrently transmitted packets by randomizing overlap occurring between the bursts.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventors: Xiaoming Yu, Alejandro J. Marquez, Indranil S. Sen, Peter M. Agboh, Shang-Te Yang, Vusthla Sunil Reddy
  • Patent number: 10567041
    Abstract: A transceiver that implements a high dynamic range NFC reader mode receiver may include a transmitter circuit to generate a transmit (TX) signal for communication to a first device via an antenna. The transceiver may further include a receiver circuit that is in communication with the first device via the antenna. The receiver circuit includes a mixer circuit and an adder circuit. The mixer circuit mixes a carrier signal with a first signal to generate a baseband signal. The adder circuit is coupled to the antenna and produces the first signal by adding a receive (RX) signal with a second signal to reduce a component of the TX signal included in the RX signal. The second signal is produced by processing a TX clock signal generated by the transmitter circuit.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: February 18, 2020
    Assignee: Apple Inc.
    Inventors: Xinping Zeng, Peter M. Agboh, Vusthla Sunil Reddy
  • Patent number: 10547290
    Abstract: Systems, methods, and devices are provided to efficiently share an antenna between multiple communication systems and allow for the communication systems to be simultaneously connected to the antenna with less attenuation and/or no fluctuation in signal strength. Communication circuitry may include an antenna that transmits and receives electromagnetic radiation. The communication circuitry may also include an antenna port that provides primary access to the antenna with a first attenuation via an antenna port input. Additionally, the communication circuitry may include a coupler attached to the antenna port. The coupler may provide secondary access to the antenna with a second attenuation.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 28, 2020
    Assignee: Apple Inc.
    Inventors: Chia Yiaw Chong, Mohit Narang, Peter M. Agboh, Hsin-Yuo Liu, Sultan R. Helmi, Tursunjan Yasin, Ye Chen
  • Patent number: 10517111
    Abstract: Exemplary embodiments include a method performed by a wireless device configured as a slave in a first piconet and configured as a master in a second piconet. The method includes determining whether the wireless device has data to transmit over the second piconet to an other wireless device, determining an availability of a full slot in a first piconet schedule, selecting a data transmission scheme based on the availability of the full slot in the first piconet schedule and transmitting the data via the second piconet to the other wireless device in accordance with the selected data transmission scheme.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: December 24, 2019
    Assignee: Apple Inc.
    Inventors: Lei Li, Xiaojun Chen, Vusthla Sunil Reddy, Mohit Narang, Qiyang Wu, Peter M. Agboh
  • Patent number: 10455392
    Abstract: An electronic device includes a transmitter configured to generate a signal. The electronic device also includes tuning circuitry coupled to the transmitter, wherein the tuning circuitry comprises a variable capacitance element and at least one fixed capacitance element having a fixed capacitance, wherein the variable capacitance element is configured to provide a dynamic capacitance based upon a voltage value related to a determined phase difference between the signal and a second signal, wherein the tuning circuitry is configured to adjust a frequency of the first signal to generate a tuned signal based upon a total capacitance comprising the fixed capacitance and the dynamic capacitance. The electronic device further includes an antenna coupled to the tuning circuitry and configured to generate an electromagnetic field based on the tuned signal.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 22, 2019
    Assignee: APPLE INC.
    Inventors: Xinping Zeng, Peter M. Agboh, Vusthla Sunil Reddy
  • Publication number: 20190245591
    Abstract: Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 8, 2019
    Inventors: Hsin-Yuo Liu, Peter M. Agboh, Mohit Narang, Indranil S. Sen, Nicholas M. McDonnell, Chia Yiaw Chong
  • Patent number: 10340967
    Abstract: A transceiver that allows dynamic high-pass filter (HPF) cut-off frequency adjustment may include a mixer circuit to mix a local oscillator (LO) signal with a receive (RX) signal received from a transmitter to generate a baseband signal. The transceiver may further include a high-pass filter (HPF) having an adjustable cut-off frequency that is used to reduce a DC offset of the baseband signal. A control circuit can dynamically control components of the HPF to set the adjustable cut-off frequency at a first frequency during a first time period and at a second frequency during a second time period.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: July 2, 2019
    Assignee: Apple Inc.
    Inventors: Xinping Zeng, Mohit Narang, Peter M. Agboh, Vusthla Sunil Reddy
  • Publication number: 20190159285
    Abstract: Exemplary embodiments include a system having a first wireless audio output device and a second wireless audio output device. One of the first or second audio output devices is configured to one of connect as a slave to a source device in a first piconet and connect as a master to the other one of the first or second audio output devices in a second piconet. The one of the first or second wireless audio output devices determines whether an audio packet transmitted by the source device via the first piconet was received by the first wireless audio output device and the second wireless audio output device, and, when at least one of the first wireless audio output device or the second wireless audio output device did not receive the audio packet, the audio packet is exchanged between the first and second wireless audio output devices via the second piconet.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 23, 2019
    Inventors: Lei Li, Xiaojun CHEN, Vusthla Sunil REDDY, Peter M. AGBOH, Mohit NARANG