Patents by Inventor Peter M. Lilleboe

Peter M. Lilleboe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8477065
    Abstract: An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: July 2, 2013
    Assignee: CODAR Ocean Sensors Ltd
    Inventors: Donald E. Barrick, Peter M. Lilleboe
  • Publication number: 20110309973
    Abstract: An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.
    Type: Application
    Filed: August 31, 2011
    Publication date: December 22, 2011
    Applicant: CODAR OCEAN SENSORS, LTD.
    Inventors: Donald E. BARRICK, Peter M. LILLEBOE
  • Patent number: 8031109
    Abstract: An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: October 4, 2011
    Assignee: Codar Ocean Sensors, Ltd.
    Inventors: Donald E. Barrick, Peter M. Lilleboe
  • Publication number: 20110012776
    Abstract: An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.
    Type: Application
    Filed: July 17, 2009
    Publication date: January 20, 2011
    Inventors: Donald E. BARRICK, Peter M. Lilleboe
  • Patent number: 7688251
    Abstract: Systems and methods are described for monitoring the surface flow velocity and volume discharge of rivers and channels using a VHF/UHF radar located in operative relationship with a riverbank. This frequency region allows precise estimation and removal of the Bragg wave velocity; it also is matched to the short wind-wave roughness periods existing on river surfaces so that operation is possible nearly all the time. Methods of bearing determination are also disclosed. Up/downriver surface velocity profiles vs. distance across the river may be constructed from maps of the radial velocity component from a single radar at thousands of points within the radar's coverage. Methods to compensate for Doppler aliasing under high flow conditions are also shown.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 30, 2010
    Assignee: CODAR Ocean Sensors, Ltd
    Inventors: Donald E. Barrick, Calvin C. Teague, Peter M. Lilleboe
  • Publication number: 20090195437
    Abstract: Systems and methods are described for monitoring the surface flow velocity and volume discharge of rivers and channels using a VHF/UHF radar located in operative relationship with a riverbank. This frequency region allows precise estimation and removal of the Bragg wave velocity; it also is matched to the short wind-wave roughness periods existing on river surfaces so that operation is possible nearly all the time. Methods of bearing determination are also disclosed. Up/downriver surface velocity profiles vs. distance across the river may be constructed from maps of the radial velocity component from a single radar at thousands of points within the radar's coverage. Methods to compensate for Doppler aliasing under high flow conditions are also shown.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 6, 2009
    Inventors: Donald E. Barrick, Calvin C. Teague, Peter M. Lilleboe
  • Patent number: 6856276
    Abstract: Systems and methods are described for HF radar frequency sharing with GPS time modulation multiplexing. A method is provided that includes generating clock signals from the time information contained in a GPS signal. Radio frequency signals are transmitted and received in a sequence whose start times are dictated by the clock signals. The clock signals also control the modulation of the radio frequency signals. The radio frequency signals are modulated by using a sweep modulation. An apparatus to implement the method includes a GPS receiver, a state machine, a clock generator, a microprocessor, a memory chip, a signal synthesizer, and a digital data output device. The GPS receiver extracts time information from GPS signals. The state machine controls radar functions versus time. The microprocessor performs modulation multiplexing on radar signals.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 15, 2005
    Assignee: Codar Ocean Sensors, Ltd.
    Inventors: Donald E. Barrick, Peter M. Lilleboe, Calvin C. Teague
  • Patent number: 6844849
    Abstract: Systems and methods are described for circular superdirective receive antenna arrays. A method includes calculating an minimum array efficiency of the superdirective circular receive array, calculating a maximum superdirective gain of the superdirective circular receive array, determining an amplitude weight or a phase weight for an array element in the superdirective circular receive array based on the minimum array efficiency and the maximum superdirective gain, and determining number of array elements in the superdirective circular receive array and a radius of the superdirective circular receive array.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 18, 2005
    Assignee: Codar Ocean Sensors, Ltd.
    Inventors: Donald E. Barrick, Peter M. Lilleboe
  • Patent number: 6774837
    Abstract: A bistatic radar system (100), method and computer program (178) are provided for mapping of oceanic surface conditions. Generally, the system (100) includes at least one transmitter (102) and at least one receiver (106) located separate from one another, and each having a local oscillator locked to a Global Positioning System (GPS) signal received by a GPS synchronization circuit (134) to provide the necessary coherency between the transmitted and received signals. Preferably, the present invention enables an existing backscatter radar systems to be quickly and inexpensively upgraded to a bistatic radar system (100) through the addition of a transmitter (102) and/or receiver (106) separate from the backscatter radar system, the GPS circuit (134), and use of the computer program (178) and method of the present invention.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: August 10, 2004
    Assignee: Codar Ocean Sensors, Ltd.
    Inventors: Donald E. Barrick, Peter M. Lilleboe, Belinda J. Lipa, James Isaacson
  • Publication number: 20040090363
    Abstract: A bistatic radar system (100), method and computer program (178) are provided for mapping of oceanic surface conditions. Generally, the system (100) includes at least one transmitter (102) and at least one receiver (106) located separate from one another, and each having a local oscillator locked to a Global Positioning System (GPS) signal received by a GPS synchronization circuit (134) to provide the necessary coherency between the transmitted and received signals. Preferably, the present invention enables an existing backscatter radar systems to be quickly and inexpensively upgraded to a bistatic radar system (100) through the addition of a transmitter (102) and/or receiver (106) separate from the backscatter radar system, the GPS circuit (134), and use of the computer program (178) and method of the present invention.
    Type: Application
    Filed: October 27, 2003
    Publication date: May 13, 2004
    Applicant: CODAR OCEAN SENSORS, LTD.
    Inventors: Donald E. Barrick, Peter M. Lilleboe, Belinda J. Lipa, James Isaacson
  • Publication number: 20030071751
    Abstract: A bistatic radar system (100), method and computer program (178) are provided for mapping of oceanic surface conditions. Generally, the system (100) includes at least one transmitter (102) and at least one receiver (106) located separate from one another, and each having a local oscillator locked to a Global Positioning System (GPS) signal received by a GPS synchronization circuit (134) to provide the necessary coherency between the transmitted and received signals. Preferably, the present invention enables an existing backscatter radar systems to be quickly and inexpensively upgraded to a bistatic radar system (100) through the addition of a transmitter (102) and/or receiver (106) separate from the backscatter radar system, the GPS circuit (134), and use of the computer program (178) and method of the present invention.
    Type: Application
    Filed: December 19, 2001
    Publication date: April 17, 2003
    Inventors: Donald E. Barrick, Peter M. Lilleboe, Belinda J. Lipa, James Isaacson
  • Publication number: 20030025629
    Abstract: Systems and methods are described for HF radar frequency sharing with GPS time modulation multiplexing. A method is provided that includes generating clock signals from the time information contained in a GPS signal. Radio frequency signals are transmitted and received in a sequence whose start times are dictated by the clock signals. The clock signals also control the modulation of the radio frequency signals. The radio frequency signals are modulated by using a sweep modulation. An apparatus to implement the method includes a GPS receiver, a state machine, a clock generator, a microprocessor, a memory chip, a signal synthesizer, and a digital data output device. The GPS receiver extracts time information from GPS signals. The state machine controls radar functions versus time. The microprocessor performs modulation multiplexing on radar signals.
    Type: Application
    Filed: March 28, 2002
    Publication date: February 6, 2003
    Inventors: Donald E. Barrick, Peter M. Lilleboe, Calvin C. Teague
  • Patent number: 5361072
    Abstract: A lower-frequency compact radar system for wide-angle surveillance. Direction-finding receive antennas consisting of colocated orthogonal electric and magnetic dipoles provide target angles from the radar. The size of this antenna unit is reduced to the point where internal noise is comparable to external to achieve maximum compactness. High sensitivity is achieved with an efficient class of pulsed/gated, linearly swept-frequency waveforms that are generated and processed digitally. For backscatter radars, close to 50% duty factors are realized. The rules for waveform design and processing overcome problems of range/Doppler aliasing and/or blind zones. After mixing in the receiver, processing bandwidths are much less than RF signal bandwidths, so that simple, inexpensive personal computers are used for real-time signal processing. Digital FFT algorithms determine target range and Doppler, and DF algorithms determine its angles.
    Type: Grant
    Filed: February 28, 1992
    Date of Patent: November 1, 1994
    Assignee: Codar Ocean Sensors, Ltd.
    Inventors: Donald E. Barrick, Belinda J. Lipa, Peter M. Lilleboe, Jimmy Isaacson