Patents by Inventor Peter Mullner

Peter Mullner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8670267
    Abstract: A data storage method includes writing data to a ferromagnetic shape-memory material in its ferromagnetic state, the material exhibiting more than two stable states. A data storage device includes a non-volatile memory element containing a ferromagnetic shape-memory alloy in a martensite state, the shape-memory alloy being ferromagnetic in a plurality of stable states of the memory element.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 11, 2014
    Assignee: Boise State University
    Inventors: Chad S. Watson, William B. Knowlton, Peter Müllner
  • Patent number: 8586194
    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 19, 2013
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, Cassie Witherspoon, David C. Dunand, Xuexi Zhang, Yuttanant Boonyongmaneerat
  • Publication number: 20120236632
    Abstract: A data storage method includes writing data to a ferromagnetic shape-memory material in its ferromagnetic state, the material exhibiting more than two stable states. A data storage device includes a non-volatile memory element containing a ferromagnetic shape-memory alloy in a martensite state, the shape-memory alloy being ferromagnetic in a plurality of stable states of the memory element.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 20, 2012
    Inventors: Chad S. Watson, William B. Knowlton, Peter Müllner
  • Patent number: 8233314
    Abstract: Apparatus and methods are disclosed that enable writing data on, and reading data of, multi-state elements having greater than two states. The elements may be made of magnetoplastic and/or magnetoelastic materials, including, for example, magnetic shape-memory alloy or other materials that couple magnetic and crystallographic states. The writing process is preferably conducted through the application of a magnetic field and/or a mechanical action. The reading process is preferably conducted through atomic-force microscopy, magnetic-force microscopy, spin-polarized electrons, magneto-optical Kerr effect, optical interferometry or other methods, or other methods/effects. The multifunctionality (crystallographic, magnetic, and shape states each representing a functionality) of the multi-state elements allows for simultaneous operations including read&write, sense&indicate, and sense&control.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: July 31, 2012
    Assignee: Boise State University
    Inventors: Peter Mullner, William B Knowlton
  • Patent number: 8008816
    Abstract: A magnetoplastic and/or magnetoelastic material transduces linear motion, delivered to it by a mechanical connection, into a change of magnetic field, via twin boundary deformation. A bias magnetic field assures a net change of magnetization during the deformation, and a coil, coaxial with the magnetoplastic/elastic material, couples the magnetic field change to an electrical output. The bias magnetic field or a device that produces strain in a reverse direction resets the magnetomechanical transducer to its initial state. Microgenerators using the magnetoplastic/elastic material may be connected in series or parallel, combined with solar cells, and used to capture energy from passive motion such as random, cyclic or vibrational motion.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 30, 2011
    Assignee: Boise State University
    Inventors: Greg Hampikian, Peter Mullner
  • Patent number: 7964290
    Abstract: A magnetic materials construct and a method to produce the construct are disclosed. The construct exhibits large magnetic-field-induced deformation through the magnetic-field-induced motion of crystallographic interfaces. The construct is a porous, polycrystalline composite structure of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. If the struts are polycrystalline, they have a “bamboo” microstructure wherein the grain boundaries traverse the entire width of the strut. The material from which the construct is made is preferably a magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga. The construct is preferably an open-pore foam. The foam is preferably produced with a space-holder technique. Space holders may be dissolvable ceramics and salts including NaAlO2.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 21, 2011
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, David C. Dunand, Yuttanant Boonyongmaneerat
  • Publication number: 20110110139
    Abstract: Apparatus and methods are disclosed that enable writing data on, and reading data of, multi-state elements having greater than two states. The elements may be made of magnetoplastic and/or magnetoelastic materials, including, for example, magnetic shape-memory alloy or other materials that couple magnetic and crystallographic states. The writing process is preferably conducted through the application of a magnetic field and/or a mechanical action. The reading process is preferably conducted through atomic-force microscopy, magnetic-force microscopy, spin-polarized electrons, magneto-optical Kerr effect, optical interferometry or other methods, or other methods/effects. The multifunctionality (crystallographic, magnetic, and shape states each representing a functionality) of the multi-state elements allows for simultaneous operations including read&write, sense&indicate, and sense&control.
    Type: Application
    Filed: May 4, 2010
    Publication date: May 12, 2011
    Applicant: BOISE STATE UNIVERSITY
    Inventors: PETER MULLNER, WILLIAM B. KNOWLTON
  • Publication number: 20110064965
    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%.
    Type: Application
    Filed: July 20, 2010
    Publication date: March 17, 2011
    Applicant: BOISE STATE UNIVERSITY
    Inventors: Peter Mullner, Markus Chmielus, Cassie Witherspoon, David C. Dunand, Xuexi Zhang, Yuttanant Boonyongmaneerat
  • Patent number: 7710766
    Abstract: Apparatus and methods are disclosed that enable writing data on, and reading data of, multi-state elements having greater than two states. The elements may be made of magnetoplastic and/or magnetoelastic materials, including, for example, magnetic shape-memory alloy or other materials that couple magnetic and crystallographic states. The writing process is preferably conducted through the application of a magnetic field and/or a mechanical action. The reading process is preferably conducted through atomic-force microscopy, magnetic-force microscopy, spin-polarized electrons, magneto-optical Kerr effect, optical interferometry or other methods, or other methods/effects. The multifunctionality (crystallographic, magnetic, and shape states each representing a functionality) of the multi-state elements allows for simultaneous operations including read&write, sense&indicate, and sense&control.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: May 4, 2010
    Assignee: Boise State University
    Inventors: Peter Mullner, William B. Knowlton
  • Publication number: 20090092817
    Abstract: A magnetic materials construct and a method to produce the construct are disclosed. The construct exhibits large magnetic-field-induced deformation through the magnetic-field-induced motion of crystallographic interfaces. The construct is a porous, polycrystalline composite structure of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. If the struts are polycrystalline, they have a “bamboo” microstructure wherein the grain boundaries traverse the entire width of the strut. The material from which the construct is made is preferably a magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga. The construct is preferably an open-pore foam. The foam is preferably produced with a space-holder technique. Space holders may be dissolvable ceramics and salts including NaAlO2.
    Type: Application
    Filed: September 2, 2008
    Publication date: April 9, 2009
    Applicants: BOISE STATE UNIVERSITY, NORTHWESTERN UNIVERSITY
    Inventors: PETER MULLNER, MARKUS CHMIELUS, DAVID C. DUNAND, YUTTANANT BOONYONGMANEERAT
  • Publication number: 20080225575
    Abstract: Apparatus and methods are disclosed that enable writing data on, and reading data of, multi-state elements having greater than two states. The elements may be made of magnetoplastic and/or magnetoelastic materials, including, for example, magnetic shape-memory alloy or other materials that couple magnetic and crystallographic states. The writing process is preferably conducted through the application of a magnetic field and/or a mechanical action. The reading process is preferably conducted through atomic-force microscopy, magnetic-force microscopy, spin-polarized electrons, magneto-optical Kerr effect, optical interferometry or other methods, or other methods/effects. The multifunctionality (crystallographic, magnetic, and shape states each representing a functionality) of the multi-state elements allows for simultaneous operations including read&write, sense&indicate, and sense&control.
    Type: Application
    Filed: November 14, 2007
    Publication date: September 18, 2008
    Applicant: BOISE STATE UNIVERSITY
    Inventors: Peter Mullner, William Knowlton
  • Publication number: 20080143195
    Abstract: A magnetomechanical transducer, and apparatus and methods using said magnetomechanical transducer, extract electrical power from any motion, including random motion, cyclic, and vibrational motion. The motion is transferred to linear motion through a mechanical connecting device to the magnetomechanical coupler, which comprises a magnetoplastic and/or magnetoelastic material that transduces the linear motion into a change of magnetic field, via twin boundary deformation. A bias magnetic field assures a net change of magnetization during said deformation. A further transducer, e.g. a coil or a Hall element, couples the magnetic field change to an electrical output. A restoring field or device, for example the bias magnetic field or a device that produces strain in a reverse direction, resets the magnetomechanical transducer to its initial state. The magnetomechanical transducer may be provided in microgenerators that capture kinetic energy and convert it to electrical power.
    Type: Application
    Filed: October 19, 2007
    Publication date: June 19, 2008
    Applicant: BOISE STATE UNIVERSITY
    Inventors: GREG HAMPIKIAN, PETER MULLNER