Patents by Inventor Peter N. Slater

Peter N. Slater has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230084729
    Abstract: Methods for reducing or reusing emissions and waste from oil and gas processing facilities are described. Specifically, emission and waste streams can be partially oxidized before being treated in a modified syngas fermentation process with parallel bioreactors to produce commodity chemicals of commercial importance while lowering greenhouse gas emissions. At least one bioreactor is online at all times, offline reactors being emptied to collect product and recharged for use.
    Type: Application
    Filed: August 2, 2022
    Publication date: March 16, 2023
    Applicant: CONOCOPHILLIPS COMPANY
    Inventor: Peter N. SLATER
  • Publication number: 20220372379
    Abstract: Disclosed are systems and methods for processing liquefied natural gas (LNG). A LNG production system may include a contaminant removal process with one or more sets of sorbent beds co-loaded with a metal sulfide sorbent and/or metal oxide sorbent. In some examples, the contaminant removal process may include one or more molecular sieve dehydrators co-loaded with a 3A or 4A sieve and a 3A or 4A sieve impregnated with silver. The one or more sets of sorbent beds may be arranged at various locations throughout the LNG production system including upstream of or downstream of heavy component removal beds having activated carbon. In some instances, the LNG production system may include a regeneration process for moving heated fluid, typically feed gas, through a first heavy component removal bed while maintaining other heavy component removal beds online to reduce downtime for the LNG production system, increase production efficiency, and decrease an amount of greenhouse gases released from defrost and flare-offs.
    Type: Application
    Filed: May 18, 2022
    Publication date: November 24, 2022
    Inventors: Wesley R. Qualls, Christopher M. Widner, Peter N. Slater
  • Patent number: 10760393
    Abstract: Steam assisted gravity drainage (SAGD) equipment including steam generating equipment may be cleaned using supercritical carbon dioxide. Supercritical carbon dioxide is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure. Supercritical carbon dioxide has exceptional solvent qualities that can dissolve, soften, or dislodge the refractory fouling deposits in the SAGD equipment.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: September 1, 2020
    Assignee: ConocoPhillips Company
    Inventor: Peter N. Slater
  • Publication number: 20180328156
    Abstract: SAGD equipment including steam generating equipment may be cleaned using supercritical carbon dioxide. Supercritical carbon dioxide is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure. Supercritical carbon dioxide has exceptional solvent qualities that can dissolve, soften, or dislodge the refractory fouling deposits in the SAGD equipment.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 15, 2018
    Inventor: Peter N. SLATER
  • Publication number: 20150096754
    Abstract: Systems and methods relate to vaporizing water into steam, which may be utilized in applications such as bitumen production. Initial indirect vaporization of the water at a first pressure for treatment precedes a steam generator boiling the water at a second pressure higher than the first pressure. The indirect vaporization of the water occurs in a vessel upon contact of the water with a substance such as solid particulate heated to a temperature sufficient to vaporize the water. Impurities in the water deposit on the solid particulate and/or combust limiting pass through of the impurities to the steam generator given that a vapor output of the vessel from the initial indirect vaporization condenses and is pressurized before being supplied to the steam generator.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 9, 2015
    Inventors: David W. LARKIN, Peter N. SLATER, Kening GONG
  • Patent number: 8920634
    Abstract: Methods and systems relate to treating an oil-in-water emulsion with an electron beam to decrease aromatic content therein for subsequent recovery of diesel products with upgraded cetane number. The method includes passing the emulsion formed of water and a hydrocarbon stream, such as light cycle oil, through an electron beam. The electron beam causes radiolysis of the water into intermediates that react with and open rings of aromatic compounds from the hydrocarbon stream. Separation of the water from the emulsion after the treating with the electron beam provides the diesel products, which may be hydroprocessed to remove oxygenates.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Phillips 66 Company
    Inventor: Peter N. Slater
  • Publication number: 20140166281
    Abstract: Systems and methods generate steam in hydrocarbon recovery operations and may further enable emulsion separation and product upgrading. The methods rely on indirect boiling of water by contact with a thermal transfer liquid heated to a temperature sufficient to vaporize the water. Examples of the liquid include oils, recovered hydrocarbons, liquid metals and brine. Heating of the liquid may utilize circulation of the liquid across or through a furnace, heat exchangers, or a gas-liquid contactor supplied with hot gas. Further, a solvent for bitumen introduced into the water may also vaporize upon contact with the thermal transfer liquid.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: David W. LARKIN, Peter N. SLATER, Christopher R. COPELAND, Richard D. SADOK
  • Publication number: 20140165930
    Abstract: Systems and methods relate to vaporizing water into steam, which may be utilized in applications such as bitumen production. The methods rely on indirect boiling of the water by contact with a substance such as solid particulate heated to a temperature sufficient to vaporize the water. Heating of the solid particulate may utilize pressure isolated heat exchanger units or a hot gas recirculation circuit at a pressure corresponding to that desired for the steam. Further, the water may form part of a mixture that contacts the solid particulate and includes a solvent for the bitumen in order to limit vaporization energy requirements and facilitate the production.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 19, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: David W. LARKIN, Scott D. LOVE, Scott MACADAM, Peter N. SLATER
  • Publication number: 20140165928
    Abstract: Systems and methods relate to vaporizing water into steam, which may be utilized in applications such as bitumen production. The methods rely on indirect boiling of the water by contact with a substance such as solid particulate heated to a temperature sufficient to vaporize the water. Heating of the solid particulate may utilize pressure isolated heat exchanger units or a hot gas recirculation circuit at a pressure corresponding to that desired for the steam. Further, the water may form part of a mixture that contacts the solid particulate and includes a solvent for the bitumen in order to limit vaporization energy requirements and facilitate the production.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 19, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: David W. LARKIN, Scott D. LOVE, Scott MACADAM, Peter N. SLATER, Edward G. LATIMER, Richard B. MILLER
  • Publication number: 20140166263
    Abstract: Systems and methods generate steam in hydrocarbon recovery operations and may further enable emulsion separation and product upgrading. The methods rely on indirect boiling of water by contact with a thermal transfer liquid heated to a temperature sufficient to vaporize the water. Examples of the liquid include oils, recovered hydrocarbons, liquid metals and brine. Heating of the liquid may utilize circulation of the liquid across or through a furnace, heat exchangers, or a gas-liquid contactor supplied with hot gas. Further, a solvent for bitumen introduced into the water may also vaporize upon contact with the thermal transfer liquid.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 19, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Peter N. SLATER, Christopher R. COPELAND
  • Publication number: 20140166538
    Abstract: Systems and methods generate steam in hydrocarbon recovery operations and may further enable emulsion separation and product upgrading. The methods rely on indirect boiling of water by contact with a thermal transfer liquid heated to a temperature sufficient to vaporize the water. Examples of the liquid include oils, recovered hydrocarbons, liquid metals and brine. Heating of the liquid may utilize circulation of the liquid across or through a furnace, heat exchangers, or a gas-liquid contactor supplied with hot gas. Further, a solvent for bitumen introduced into the water may also vaporize upon contact with the thermal transfer liquid.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 19, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: David W. LARKIN, Peter N. SLATER, Richard D. SADOK
  • Publication number: 20120318715
    Abstract: Methods and systems relate to treating an oil-in-water emulsion with an electron beam to decrease aromatic content therein for subsequent recovery of diesel products with upgraded cetane number. The method includes passing the emulsion formed of water and a hydrocarbon stream, such as light cycle oil, through an electron beam. The electron beam causes radiolysis of the water into intermediates that react with and open rings of aromatic compounds from the hydrocarbon stream. Separation of the water from the emulsion after the treating with the electron beam provides the diesel products, which may be hydroprocessed to remove oxygenates.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: PHILLIPS 66 COMPANY
    Inventor: Peter N. Slater
  • Publication number: 20040129607
    Abstract: A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on said support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition. A process for the removal of sulfur from a hydrocarbon stream, wherein the hydrocarbon stream is a combination of cracked gasoline and diesel fuel, is also disclosed.
    Type: Application
    Filed: November 26, 2003
    Publication date: July 8, 2004
    Inventors: Peter N. Slater, Byron G. Johnson, Edward L. Sughrue, Dennis R. Kidd
  • Patent number: 6745708
    Abstract: A method and/or apparatus for efficiently operating a combustion device including at least one control zone, with each control zone including at least one burner assembly, is disclosed and includes a) individually supplying fuel to each of the burner assemblies in each of the control zones, b) individually measuring a separate combustion characteristic of the collective combusted gas from each of the burner assemblies in each of the control zones, and c) individually adjusting the flow of air to each of the burner assemblies in response to the value of the combustion characteristic corresponding to each of the control zones to keep the value of each separate combustion characteristic within a predetermined range. In a preferred embodiment, primary air and secondary air are separately supplied and controlled to each of the burner assemblies in each of the control zones in response to the value of the combustion characteristic corresponding to each of the control zones.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: June 8, 2004
    Assignee: ConocoPhillips Company
    Inventors: Peter N. Slater, Jimmie Joe Straw, Bruce W. Gerhold, Ricky E. Snelling, Steven A. Owen, Kent E. Jeffers
  • Publication number: 20040007501
    Abstract: A system for removing sulfur from a hydrocarbon-containing fluid stream wherein desulfurization is enhanced by oxidizing certain organosulfur compounds of the hydrocarbon-containing fluid stream prior to desulfurization.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 15, 2004
    Inventors: Edward L. Sughrue, Marvin M. Johnson, Bruce B. Randolph, Steven A. Owen, Peter N. Slater, Byron G. Johnson
  • Publication number: 20030110993
    Abstract: A method and/or apparatus for efficiently operating a combustion device including at least one control zone, with each control zone including at least one burner assembly, is disclosed and includes a) individually supplying fuel to each of the burner assemblies in each of the control zones, b) individually measuring a separate combustion characteristic of the collective combusted gas from each of the burner assemblies in each of the control zones, and c) individually adjusting the flow of air to each of the burner assemblies in response to the value of the combustion characteristic corresponding to each of the control zones to keep the value of each separate combustion characteristic within a predetermined range. In a preferred embodiment, primary air and secondary air are separately supplied and controlled to each of the burner assemblies in each of the control zones in response to the value of the combustion characteristic corresponding to each of the control zones.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Inventors: Peter N. Slater, Jimmie Joe Straw, Bruce W. Gerhold, Ricky E. Snelling, Steven A. Owen, Kent E. Jeffers
  • Publication number: 20030111389
    Abstract: A process for desulfurizing middle distillates by charging a sulfur-containing middle distillate and a hydrogen-containing diluent to a reaction zone in respective amounts and under reaction conditions sufficient to vaporize substantially all of the sulfur-containing middle distillate present in the reaction zone. In the reaction zone, the vaporized middle distillate is contacted with a sorbent comprising a promoter metal and zinc oxide to thereby provide a desulfurized middle distillate comprising less sulfur than the sulfur-containing middle distillate initially charged to the reaction zone.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Inventors: Marvin M. Johnson, Edward L. Sughrue, Steven A. Owen, Peter N. Slater, Byron G. Johnson