Patents by Inventor Peter R. Bossard

Peter R. Bossard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942155
    Abstract: A system and method of determining levels of contaminants in a base gas. A gas chromatography column is used as part of a cold trap. A sample of a base gas is fed through the gas chromatography column. Due to the temperature of the gas chromatography column, some of the contaminants concentrate. A purified carrier gas is directed through the reinforced tube assembly after contaminants have collected. The gas chromatography column is heated to a second temperature that releases at least some of the concentrated contaminants. The contaminants mix with the purified carrier gas to create a contaminated carrier gas. The contaminated carrier gas is directed to one or more testing units that analyze the contaminated carrier gas to quantify the contaminants.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: March 9, 2021
    Assignee: Power & Energy, Inc.
    Inventor: Peter R. Bossard
  • Patent number: 9994447
    Abstract: The present invention is a system and method of heating a reaction cell that produces hydrogen from a mixture of hydrocarbon fuel and steam. The reaction cell contains a first tube of hydrogen permeable material and a second tube of hydrogen impermeable material. The first tube and the second tube are concentrically positioned so that a gap space exists between the two tubes. A heat pipe structure is utilized to heat the gap space. The heat pipe structure defines an enclosed vapor chamber. A volume of a multi-phase material is disposed within the vapor chamber. The multi-phase material changes phase between a liquid and gas within an operating temperature range. A heating element is used to heat the vapor chamber to the operating temperature range. The vapor chamber transfers heat along its length in the same manner as a heat pipe.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: June 12, 2018
    Assignee: Power & Energy, Inc.
    Inventor: Peter R. Bossard
  • Patent number: 9884761
    Abstract: A hydrogen separator having a first end plate, a second end plate, and a cylindrical support extending from the second end plate. A permeable tube support plate is suspended by the cylindrical support, wherein the second end plate, cylindrical support and permeable tube support plate define a collection chamber. A hydrogen permeable tube is coupled to the permeable tube support plate. A housing surrounds the cylindrical support. An exhaust tube support plate is within the housing and external of the collection chamber, wherein an exhaust chamber is defined between the exhaust tube support plate and the first end plate.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 6, 2018
    Assignee: Power & Energy, Inc.
    Inventor: Peter R. Bossard
  • Patent number: 9518904
    Abstract: A system and method of taking a sample of hydrogen gas and reducing the hydrogen concentration by a factor greater than 1×108 while increasing the partial pressure of the contaminating gases by a factor greater than 100, so that extremely low levels of contamination can be accurately detected. A sample of hydrogen gas is captured. Only the hydrogen gas is removed leaving all the contaminating gases in the collection chamber. This causes the total pressure of the gas sample within the collection chamber to decrease dramatically since most of the gas was hydrogen. All the contaminants remain in the collection chamber. None are lost through pumping. As such, the concentration of contaminants within the remaining sample increases dramatically. The residual partial pressures of the contaminating gases within the collection chamber and can now be measured by a variety of techniques.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: December 13, 2016
    Inventors: Peter R. Bossard, Luis Breziner, Paolo Moreschini
  • Publication number: 20160151737
    Abstract: A hydrogen separator having a first end plate, a second end plate, and a cylindrical support extending from the second end plate. A permeable tube support plate is suspended by the cylindrical support, wherein the second end plate, cylindrical support and permeable tube support plate define a collection chamber. A hydrogen permeable tube is coupled to the permeable tube support plate. A housing surrounds the cylindrical support. An exhaust tube support plate is within the housing and external of the collection chamber, wherein an exhaust chamber is defined between the exhaust tube support plate and the first end plate.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 2, 2016
    Inventor: Peter R. Bossard
  • Publication number: 20160115019
    Abstract: The present invention is a system and method of heating a reaction cell that produces hydrogen from a mixture of hydrocarbon fuel and steam. The reaction cell contains a first tube of hydrogen permeable material and a second tube of hydrogen impermeable material. The first tube and the second tube are concentrically positioned so that a gap space exists between the two tubes. A heat pipe structure is utilized to heat the gap space. The heat pipe structure defines an enclosed vapor chamber. A volume of a multi-phase material is disposed within the vapor chamber. The multi-phase material changes phase between a liquid and gas within an operating temperature range. A heating element is used to heat the vapor chamber to the operating temperature range. The vapor chamber transfers heat along its length in the same manner as a heat pipe.
    Type: Application
    Filed: October 28, 2015
    Publication date: April 28, 2016
    Inventor: Peter R. Bossard
  • Patent number: 9169118
    Abstract: A hydrogen purification method that is used to separate hydrogen gas from a source gas. A hydrogen separator is provided that has at least one hydrogen permeable tube. A support tube is provided for each hydrogen permeable tube. A support tube is coaxially aligned with the hydrogen permeable tube, wherein a micro-channel exists between the hydrogen permeable tube and the support tube in an area of overlap. A tubular wire structure is placed within the micro-channel. The tubular wire structure is coated with catalyst material. The source gas is introduced into the micro-channel. The source gas spreads thinly past the tubular wire structure in the micro-channel. The restrictions of the micro-channel cause the source gas to embody turbulent flow characteristics as it flows. The turbulent flow causes the hydrogen separator to separate hydrogen from the source gas in a highly efficient manner.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: October 27, 2015
    Assignee: SAES PURE GAS, INC.
    Inventor: Peter R. Bossard
  • Patent number: 9039814
    Abstract: The tube assemblies are joined together into a matrix by a plate. The plate has a first surface, an opposite second surface and a plurality of holes. Each hole has a countersunk region that descends into the plate from the first surface. Tube assemblies are provided. Each tube assembly has a first end, an opposite second end, and a flare structure. The flare structure is sized to be fully received within the countersunk region. The tube assemblies extend through the holes in the plate. The flare structure of each tube assembly is welded to the plate within the countersunk region of each hole through which each tube assembly passes.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: May 26, 2015
    Assignee: SAES PURE GAS, INC.
    Inventor: Peter R. Bossard
  • Patent number: 8889098
    Abstract: A system and method of producing hydrogen from a mixture of hydrocarbon fuel and steam. Reaction cells are provided that each contains a first tube of hydrogen permeable material and a second tube of hydrogen impermeable material that are concentrically positioned. This creates a gap space between the first tube and the second tube. The gap space is heated by burning a combustion gas outside of the two concentric tubes. A water gas shift reaction occurs in the gap space. Hydrogen is created that permeates through the first tube and becomes separated from the remainder of the reaction gases. The hydrogen gas is collected for use. As such, the system and method acts both as a gas shift reactor and as a hydrogen separator even though it is a single unit.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 18, 2014
    Inventors: Peter R. Bossard, Jacob Mettes
  • Patent number: 8875559
    Abstract: A system and method for taking a sample of hydrogen gas and conditioning that sample so that extremely low levels of contamination can be more accurately detected. Initially a sample of hydrogen gas is captured and isolated in a collection chamber. A hydrogen permeable membrane is provided having a first side and a second side. The first side of the hydrogen permeable membrane is exposed to the gas sample held within the collection chamber. The hydrogen gas contained within the gas sample begins to permeate through the hydrogen permeable membrane and exit the collection chamber. This causes the pressure of the gas sample within the collection chamber to decrease. Since contaminants remain in the collection chamber, the concentration of contaminants within the remaining sample increases exponentially. The residual pressure within the collection chamber is measured and converted into a contaminant level reading.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 4, 2014
    Assignee: Power & Energy, Inc.
    Inventor: Peter R. Bossard
  • Publication number: 20140311220
    Abstract: A system and method of taking a sample of hydrogen gas and reducing the hydrogen concentration by a factor greater than 1×108 while increasing the partial pressure of the contaminating gases by a factor greater than 100, so that extremely low levels of contamination can be accurately detected. A sample of hydrogen gas is captured. Only the hydrogen gas is removed leaving all the contaminating gases in the collection chamber. This causes the total pressure of the gas sample within the collection chamber to decrease dramatically since most of the gas was hydrogen. All the contaminants remain in the collection chamber. None are lost through pumping. As such, the concentration of contaminants within the remaining sample increases dramatically. The residual partial pressures of the contaminating gases within the collection chamber and can now be measured by a variety of techniques.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventors: Peter R. Bossard, Luis Breziner, V, Paolo Moreschini
  • Publication number: 20140311344
    Abstract: The tube assemblies are joined together into a matrix by a plate. The plate has a first surface, an opposite second surface and a plurality of holes. Each hole has a countersunk region that descends into the plate from the first surface. Tube assemblies are provided. Each tube assembly has a first end, an opposite second end, and a flare structure. The flare structure is sized to be fully received within the countersunk region. The tube assemblies extend through the holes in the plate. The flare structure of each tube assembly is welded to the plate within the countersunk region of each hole through which each tube assembly passes.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: SAES PURE GAS, INC.
    Inventor: Peter R. Bossard
  • Patent number: 8720620
    Abstract: An automobile assembly and a method of producing hydrogen gas within an automobile assembly. An automobile is provided that contains a fuel cell. The fuel cell produces electricity from purified hydrogen gas. The vehicle also has a standard fuel tank that holds liquid fuel and a water tank that holds water. A fuel reformation system is carried by the vehicle. The fuel reformation system reacts water with liquid fuel to produce hydrogen gas and exhaust gases. The hydrogen gas is separated and is supplied to the fuel cell as needed by the fuel cell. The fuel cell produces electricity that drives electric motors to power the wheel of the vehicle. The vehicle, therefore, uses traditional liquid fuel to produce the hydrogen needed to operate the fuel cell and power an otherwise electric vehicle.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 13, 2014
    Assignee: Power & Energy, Inc.
    Inventor: Peter R. Bossard
  • Patent number: 8580451
    Abstract: A power generation system and a fuel processor for use within a power generation system. A fuel processor is connected to both a fuel supply line and a water supply line. The fuel processor reacts the hydrocarbon fuel with the water to produce hydrogen gas and raffinate gases. The hydrogen gas is directed into a hydrogen gas line. The raffinate gases are directed into a raffinate gas line. A fuel cell is powered using the hydrogen gas. A heat exchanger is provided that exchanges heat between the fuel supply line, the water supply line, the hydrogen gas line and the raffinate gas line. This enables heat to be recycled. In addition the raffinate gases also travel into a water recovery subsystem. The water recovery subsystem condenses water out of the raffinate gases The recovered water is returned to the system.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: November 12, 2013
    Inventor: Peter R. Bossard
  • Patent number: 8491678
    Abstract: A system and method of recovering some of the latent heat of vaporization in a system having a heated environment that adds heat to liquid material and converts the liquid material into gaseous material. The latent heat of vaporization is partially recovered using a unique heat exchanger. The heat exchanger preheats the liquid material entering the heated environment with heat energy from the gaseous material exiting the heated environment. The heat exchanger has a gas flow path. A volume of a gas medium fills the gas flow path. A pump causes the gas medium to flow through the gas flow path at a predetermined mass flow rate. The gas medium and its flow rate are selected to ensure that the specific heat of the gas medium surpasses that of the gaseous material exiting the heated environment.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: July 23, 2013
    Inventor: Peter R. Bossard
  • Publication number: 20130145823
    Abstract: A system and method for taking a sample of hydrogen gas and conditioning that sample so that extremely low levels of contamination can be more accurately detected. Initially a sample of hydrogen gas is captured and isolated in a collection chamber. A hydrogen permeable membrane is provided having a first side and a second side. The first side of the hydrogen permeable membrane is exposed to the gas sample held within the collection chamber. The hydrogen gas contained within the gas sample begins to permeate through the hydrogen permeable membrane and exit the collection chamber. This causes the pressure of the gas sample within the collection chamber to decrease. Since contaminants remain in the collection chamber, the concentration of contaminants within the remaining sample increases exponentially. The residual pressure within the collection chamber is measured and converted into a contaminant level reading.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Inventor: Peter R. Bossard
  • Patent number: 8308828
    Abstract: A steam reformer is use in a fuel processor system to create a water gas shift reaction between a hydrocarbon fuel and water. A hydrocarbon fuel and water are provided. The water is heated to superheated steam. The hydrocarbon fuel is mixed with the superheated steam to produce a vaporized fuel/steam mixture. The vaporized fuel/steam mixture is directed into a gap space between concentric tubes. The gap space between the separate surfaces is very small. Within this confined gap space, the outer concentric tube is heated to maintain a reaction temperature range that induces the water gas shift reaction. The water gas shift reaction produces reactant gases that include hydrogen gas and contaminant gases. At least some of the contaminant gases are burned to heat the gap space.
    Type: Grant
    Filed: August 15, 2009
    Date of Patent: November 13, 2012
    Inventor: Peter R. Bossard
  • Patent number: 8299134
    Abstract: A system and method for converting the natural gas into liquid hydrocarbons. A plurality of reaction cells are provided. Each reaction cell contains two concentric tubes. The concentric tubes are close in diameter and therefore create a very narrow uniform gap space in between the concentric tubes. The outer most of the tubes is heated. Natural gas and steam are passed into the gap space of at least some of the reaction cells. Due to the confinement of the gases and the heat, the mixture undergoes a water gas shift reaction to produce syngas. The syngas can then be reintroduced into other reaction cells to induce the Fischer-Tropsch process. Accordingly, the syngas is converted into complex hydrocarbons and water. The hydrocarbons and water are separated and cooled into liquid. The water is recycled and the liquid hydrocarbons are stored and transported.
    Type: Grant
    Filed: December 26, 2009
    Date of Patent: October 30, 2012
    Inventor: Peter R. Bossard
  • Patent number: 8230594
    Abstract: A tube matrix and the corresponding method of joining a plurality of tubes to a base plate to create the tube matrix. The tube matrix has a base plate from which a plurality of parallel tubes extend. The base plate has holes formed though it to receive the tubes. The tubes are placed into the holes on the base plate. The tubes may have end flares that abut against the base plate and prevent the tubes from completely passing through the base plate. Once the tubes are in place in the holes of the base plate, the tubes and base plate are welded together with individual laser welds. The laser welds enable a very dense matrix of tubes to be welded to the base plate without damaging or obstructing the tubes.
    Type: Grant
    Filed: May 9, 2009
    Date of Patent: July 31, 2012
    Inventors: Peter R. Bossard, James Loomis
  • Patent number: 8105402
    Abstract: A steam reformer is use in a fuel processor system to create a water gas shift reaction between a hydrocarbon fuel and water. A hydrocarbon fuel and water are provided. The water is heated to superheated steam. The hydrocarbon fuel is mixed with the superheated steam to produce a vaporized fuel/steam mixture. The vaporized fuel/steam mixture is directed into a gap space between separate surfaces. The gap space between the separate surfaces is very small. Within this confined gap space, at least one of the separate surfaces is heated to maintain a reaction temperature range that induces the water gas shift reaction. The water gas shift reaction produces reactant gases that include hydrogen gas and contaminant gases. At least some of the contaminant gases are burned to heat the gap space.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: January 31, 2012
    Inventor: Peter R. Bossard